Vastaus:
Katso alempaa…
Selitys:
Ensin täytyy manipuloida yhtälöä saadaksesi
Nyt laajennamme molempia puolia juuren poistamiseksi.
Nyt manipuloimalla tätä yhtälöä voimme ratkaista
Nyt meidän on tarkistettava ratkaisu subbingillä
Tämä on väärä,
Lim 3x / tan3x x 0 Miten ratkaista se? Mielestäni vastaus on 1 tai -1, joka voi ratkaista sen?
Raja on 1. Lim_ (x -> 0) (3x) / (tan3x) = Lim_ (x -> 0) (3x) / ((sin3x) / (cos3x)) = Lim_ (x -> 0) (3xcos3x ) / (sin3x) = Lim_ (x -> 0) (3x) / (sin3x) .cos3x = Lim_ (x -> 0) väri (punainen) ((3x) / (sin3x)) cos3x = Lim_ (x - > 0) cos3x = Lim_ (x -> 0) cos (3 * 0) = Cos (0) = 1 Muista, että: Lim_ (x -> 0) väri (punainen) ((3x) / (sin3x)) = 1 ja Lim_ (x -> 0) väri (punainen) ((sin3x) / (3x)) = 1
Mikä on (sqrt (5+) sqrt (3)) / (sqrt (3+) sqrt (3+) sqrt (5)) - (sqrt (5-) sqrt (3)) / (sqrt (3+) sqrt (3-) sqrt (5))?
2/7 Otamme, A = (sqrt5 + sqrt3) / (sqrt3 + sqrt3 + sqrt5) - (sqrt5-sqrt3) / (sqrt3 + sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5 -sqrt3) / (2sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5-sqrt3) / (2sqrt3-sqrt5) = ((sqrt5 + sqrt3) (2sqrt3-sqrt5) - (sqrt5-sqrt3) ) (2sqrt3 + sqrt5)) / ((2sqrt3 + sqrt5) (2sqrt3-sqrt5) = ((2sqrt15-5 + 2 * 3-sqrt15) - (2sqrt15 + 5-2 * 3-sqrt15)) / ((2sqrt3) ^ 2- (sqrt5) ^ 2) = (peruuta (2sqrt15) -5 + 2 * 3kanta (-sqrt15) - peruuta (2sqrt15) -5 + 2 * 3 + peruuta (sqrt15)) / (12-5) = ( -10 + 12) / 7 = 2/7 Huomaa, että jos nimittäjät ovat (sqrt3 + sqrt (3
Miten yksinkertaistat (1 / sqrt (a-1) + sqrt (a + 1)) / (1 / sqrt (a + 1) -1 / sqrt (a-1)) div sqrt (a + 1) / ( (a-1) sqrt (a + 1) - (a + 1) sqrt (a-1)), a> 1?
Valtava matematiikan muotoilu ...> väri (sininen) (((1 / sqrt (a-1) + sqrt (a + 1)) / (1 / sqrt (a + 1) -1 / sqrt (a-1)) ) / (sqrt (a + 1) / ((a-1) sqrt (a + 1) - (a + 1) sqrt (a-1))) = väri (punainen) (((1 / sqrt (a- 1) + sqrt (a + 1)) / ((sqrt (a-1) -sqrt (a + 1)) / (sqrt (a + 1) cdot sqrt (a-1)))) / (sqrt (a +1) / (sqrt (a-1) cdot sqrt (a-1) cdot sqrt (a + 1) -sqrt (a + 1) cdot sqrt (a + 1) sqrt (a-1))) = väri ( sininen) (((1 / sqrt (a-1) + sqrt (a + 1)) / ((sqrt (a-1) -sqrt (a + 1)) / (sqrt (a + 1) cdot sqrt (a -1)))) / (sqrt (a + 1) / (sqrt (a + 1) cdot sqrt (a-1) (sqrt (a-1) -sqrt (a + 1))) = vä