Miten yksinkertaistat (1 / sqrt (a-1) + sqrt (a + 1)) / (1 / sqrt (a + 1) -1 / sqrt (a-1)) div sqrt (a + 1) / ( (a-1) sqrt (a + 1) - (a + 1) sqrt (a-1)), a> 1?

Miten yksinkertaistat (1 / sqrt (a-1) + sqrt (a + 1)) / (1 / sqrt (a + 1) -1 / sqrt (a-1)) div sqrt (a + 1) / ( (a-1) sqrt (a + 1) - (a + 1) sqrt (a-1)), a> 1?
Anonim

Vastaus:

Valtava matematiikan muotoilu …

Selitys:

#color (sininen) (((1 / sqrt (a-1) + sqrt (a + 1)) / (1 / sqrt (a + 1) -1 / sqrt (a-1))) / (sqrt (a +1) / ((a-1) sqrt (a + 1) - (a + 1) sqrt (a-1))) #

# = Väri (punainen) (((1 / sqrt (a-1) + sqrt (a + 1)) / ((sqrt (a-1) -sqrt (a + 1)) / (sqrt (a + 1) cdot sqrt (a-1)))) / (sqrt (a + 1) / (sqrt (a-1) cdot sqrt (a-1) cdot sqrt (a + 1) -sqrt (a + 1) cdot sqrt (a + 1) sqrt (a-1))) #

# = Väri (sininen) (((1 / sqrt (a-1) + sqrt (a + 1)) / ((sqrt (a-1) -sqrt (a + 1)) / (sqrt (a + 1) cdot sqrt (a-1)))) / (sqrt (a + 1) / (sqrt (a + 1) cdot sqrt (a-1) (sqrt (a-1) -sqrt (a + 1))) #

# = väri (punainen) ((1 / sqrt (a-1) + sqrt (a + 1)) / ((sqrt (a-1) -sqrt (a + 1)) / (sqrt (a + 1) cdot sqrt (a-1))) xx (sqrt (a + 1) cdot sqrt (a-1) (sqrt (a-1) -sqrt (a + 1)) / sqrt (a + 1) #

# = väri (sininen) ((1 / sqrt (a-1) + sqrt (a + 1)) xx ((sqrt (a + 1) cdot sqrt (a-1)) / (sqrt (a-1) - sqrt (a + 1))) xx (peruuta ((sqrt (a + 1))) cdot sqrt (a-1) (sqrt (a-1) -sqrt (a + 1))) / cancelsqrt (a + 1)) #

# = väri (punainen) (((1 + sqrt (a + 1) cdot sqrt (a-1)) / (sqrt (a-1))) xx ((sqrt (a + 1) cdot sqrt (a-1)) / (sqrt (a-1) -sqrt (a + 1))) xx sqrt (a-1) cdot (sqrt (a-1) -sqrt (a + 1)) #

# = väri (sininen) (((1 + sqrt (a + 1) cdot sqrt (a-1)) / peruuta (sqrt (a-1))) xx ((sqrt (a + 1) cdot peruuta ((sqrt) (a-1)))) / väri (punainen) (peruuta (väri (vihreä) ((sqrt (a-1) -sqrt (a + 1))))) xx sqrt (a-1) cdot-väri (punainen) (peruuta väri (vihreä) ((sqrt (a-1) -sqrt (a + 1))) #

# = väri (punainen) (ul (bar (| väri (sininen) ((1 + sqrt (a + 1) cdot sqrt (a-1)) cdot (sqrt ((a + 1) (a-1)))) | #

Vastaus:

#sqrt (a ^ 2-1) + a ^ 2-1 #

Selitys:

Yksinkertaistetaan asioita hyvin # U ^ 2 = a + 1 # ja # V ^ 2 = a-1 #, joka antaa meille:

# (V ^ -1 + u) / (u ^ -1-v ^ -1) * (UV ^ 2-vu ^ 2) / u = ((v ^ -1 + u) (UV ^ 2-vu ^ 2)) / (u (u ^ -1-v ^ -1)) = (uv-u ^ 2 + (UV) ^ 2-vu ^ 3) / (1-UV ^ -1) = (UV (1 + UV) u ^ 2 (1 + UV)) / ((vu) / v) = (uv (1 + UV) (vu)) / (vu) = uv (1 + UV) #

#uv (1 + uv) = uv + u ^ 2v ^ 2 = sqrt (a-1) sqrt (a + 1) + (a-1) (a + 1) = sqrt (a ^ 2-1) + a ^ 2-1 #