Vastaus:
Selitys:
Parabola on polku, joka on jäljitetty pisteellä siten, että etäisyys tietystä pisteestä, jota kutsutaan tarkennukseksi, ja tietty linja, jota kutsutaan Directrixiksi, on aina sama.
Olkoon parabolan kohta
Se on etäisyys tarkennuksesta
Näin ollen parabolan yhtälö, jossa on keskityttävä
tai
tai
tai
tai
kaavio {(10y + x ^ 2 + 10x + 80) (y + 3) ((x + 5) ^ 2 + (y + 8) ^ 2-0.1) = 0 -15, 5, -10, 0 }
Tomas kirjoitti yhtälön y = 3x + 3/4. Kun Sandra kirjoitti yhtälöään, he huomasivat, että hänen yhtälöstään oli kaikki samat ratkaisut kuin Tomasin yhtälöllä. Mikä yhtälö voisi olla Sandran?
4y = 12x +3 12x-4y +3 = 0 Yhtälöä voidaan antaa monissa muodoissa ja silti tarkoittaa samaa. y = 3x + 3/4 "" (tunnetaan kaltevuus / sieppausmuoto.) Kerrotaan 4: llä fraktion poistamiseksi: 4y = 12x +3 "" rarr 12x-4y = -3 "" (vakiolomake) 12x- 4y +3 = 0 "" (yleinen muoto) Nämä kaikki ovat yksinkertaisimmassa muodossa, mutta meillä voi olla myös äärettömän vaihteluita. 4y = 12x + 3 voidaan kirjoittaa seuraavasti: 8y = 24x +6 "" 12y = 36x +9, "" 20y = 60x +15 jne.
Mikä on parabolan yhtälö, jossa on huippu alkuperässä ja tarkennus (0, -1/32)?
8x ^ 2 + y = 0 Vertex on V (0, 0) ja tarkennus on S (0, -1/32). Vektori VS on y-akselissa negatiivisessa suunnassa. Niinpä parabolan akseli on peräisin alkuperäisestä ja y-akselista, negatiivisessa suunnassa, VS: n pituus = kokoparametri a = 1/32. Niinpä parabolan yhtälö on x ^ 2 = -4ay = -1 / 8y. Järjestäminen uudelleen, 8x ^ 2 + y = 0 ...
Mikä on yhtälön yhtälö, jossa on yhtälö, jossa on x-sieppaus 2 ja y-sieppaus -6?
Väri (ruskea) (3x - y = 6 "on yhtälön vakiomuoto." Rivin yhtälön vakiomuoto on ax + by = c annettu: x-sieppa = 2, y-sieppa = -6 yhtälö voidaan kirjoittaa x / a + y / b = 1: ksi, jossa a on x-sieppaus ja b on y-sieppaus:. x / 2 + y / -6 = 1 Ottaen -6 LCM: nä, (-3x + y) / -6 = 1 -3x + y = -6 väri (ruskea) (3x - y = 6 "on yhtälön vakiomuoto." #