Vastaus:
Selitys:
Päästää
Parabolan painopiste on annettu osoitteessa
Kahden pisteen välinen etäisyys on
tai
Nyt etäisyys pisteen välillä
Yhdistä kaksi etäisyysilmaisua ja neliön molemmat puolet.
tai
Uudelleenjärjestäminen ja termi sisältää
Mistä tahansa kohdasta
Mikä on yhtälö parabolan vakiomuodossa, jossa tarkennus on (11, -5) ja y = -19 suuntaussuhde?
Y = 1 / 28x ^ 2-11 / 14x-215/28> "mihin tahansa pisteeseen" (x, y) "parabolassa" "tarkennus ja suorakulma ovat yhtä kaukana" väri (sininen) "käyttämällä etäisyyskaavaa" sqrt ((x-11) ^ 2 + (y + 5) ^ 2) = | y + 19 | väri (sininen) "molempien puolien reunustaminen" (x-11) ^ 2 + (y + 5) ^ 2 = (y + 19) ^ 2 rArrx ^ 2-22x + 121cancel (+ y ^ 2) + 10y + 25 = peruuta (y ^ 2) + 38y + 361 rArr-28y = -x ^ 2 + 22x + 215 rArry = 1 / 28x ^ 2-11 / 14x-215/28
Mikä on yhtälö parabolan vakiomuodossa, jossa tarkennus on (12, -5) ja y = -6 suuntaussuhde?
Koska suorakanava on vaakasuora viiva, niin huippumuoto on y = 1 / (4f) (x - h) ^ 2 + k, jossa kärki on (h, k) ja f on allekirjoitettu pystysuora etäisyys pisteestä keskittyä. Polttoväli, f, on puolet pystysuorasta etäisyydestä tarkennuksesta suunta-suuntaan: f = 1/2 (-6--5) f = -1/2 k = y_ "tarkennus" + fk = -5 - 1/2 k = -5,5 h on sama kuin tarkennuksen x koordinaatti h = x_ "tarkennus" h = 12 Yhtälön huippumuoto on: y = 1 / (4 (-1/2)) (x - 12) ^ 2-5.5 y = 1 / -2 (x - 12) ^ 2-5.5 Laajenna neliö: y = 1 / -2 (x ^ 2 - 24x + 144) -5.5 Käytä jakoom
Mikä on yhtälö parabolan vakiomuodossa, jossa tarkennus on (14,15) ja y = -7 suuntaussuhde?
Parabolan yhtälö on y = 1/88 (x-14) ^ 2 + 15 Parabolan vakioyhtälö on y = a (x-h) ^ 2 + k, jossa (h, k) on huippu. Niinpä parabolan yhtälö on y = a (x-14) ^ 2 + 15 Pisteen etäisyys suorakaistasta (y = -7) on 15 + 7 = 22:. a = 1 / (4d) = 1 / (4 * 22) = 1/88. Näin ollen parabolan yhtälö on y = 1/88 (x-14) ^ 2 + 15-kaavio {1/88 (x-14) ^ 2 + 15 [-160, 160, -80, 80]} [Ans]