Vastaus:
Selitys:
# "yksinkertaistaa f (x) poistamalla yhteiset tekijät" #
#f (x) = (4cancel ((x + 2)) (x-1)) / (3cancel ((x + 2)) (x-5)) = (4 (x-1)) / (3 (x-5)) # Koska olemme poistaneet tekijän (x + 2), on irrotettava epäjatkuvuus x = - 2 (reikä)
#f (-2) = (4 (-3)) / (3 (-7)) = (- 12) / (- 21) = 4/7 #
#rArr "pistekatkos" kohdassa (-2,4 / 7) # Kuvaaja
#f (x) = (4 (x-1)) / (3 (x-5)) "on sama kuin" #
# (4 (x + 2) (x-1)) / (3 (x + 2) (x-5)) "mutta ilman reikää" # F (x): n nimittäjä ei voi olla nolla, koska tämä tekisi f (x): n määrittelemättömäksi. Nimittäjän yhdistäminen nollaan ja ratkaiseminen antaa arvon, jota x ei voi olla, ja jos lukija ei ole nolla tälle arvolle, se on pystysuora asymptoosi.
# "ratkaista" 3 (x-5) = 0rArrx = 5 "on asymptoosi" # Horisontaaliset asymptootit esiintyvät kuten
#lim_ (xto + -oo), f (x) toc "(vakio)" # jaetaan ehdot lukija / nimittäjä x: llä
#f (x) = ((4x) / x-4 / x) / ((3x) / x-15 / x) = (4-4 / x) / (3-15 / x) # kuten
# XTO + -oo, f (x) (4-0) / (3-0 #
# rArry = 4/3 "on asymptoosi" # kaavio {(4x-4) / (3x-15) -16,02, 16,01, -8,01, 8,01}
Mitkä ovat f (x) = (1 - 4x ^ 2) / (1 - 2x) asymptootit ja irrotettavat epäjatkuvuudet, jos sellaisia on?
Toiminto on epäjatkuva, kun nimittäjä on nolla, joka tapahtuu, kun x = 1/2 As | x | tulee hyvin suureksi, ilmaisu pyrkii +2-kertaiseksi. Siksi ei ole asymptootteja, koska ilmentymä ei taipuudu tiettyyn arvoon. Lauseketta voidaan yksinkertaistaa huomauttamalla, että lukija on esimerkki kahden neliön erosta. Sitten f (x) = ((1-2x) (1 + 2x)) / ((1-2x)) Kerroin (1-2x) peruuttaa ja lauseke muuttuu f (x) = 2x + 1, joka on suoran linjan yhtälö. Jatkuvuus on poistettu.
Mitkä ovat f (x) = (1-5x) / (1 + 2x): n asymptootit ja irrotettavat epäjatkuvuudet?
"pystysuora asymptoote" x = 1/2 "vaakasuorassa asymptootissa kohdassa" y = -5 / 2 F (x): n nimittäjä ei voi olla nolla, koska tämä tekisi f (x): n määrittelemättömäksi. Nimittäjän yhdistäminen nollaan ja ratkaiseminen antaa arvon, jota x ei voi olla, ja jos lukija ei ole nolla tälle arvolle, se on pystysuora asymptoosi. "ratkaista" 1 + 2x = 0rArrx = -1 / 2 "on asymptoottinen" "horisontaalinen asymptootti esiintyy" lim_ (xto + -oo), f (x) toc "(vakio)" "jaa ehdot lukijaan / nimittäjä
Mitkä ovat f (x) = 1 / (8x + 5) -x: n asymptootit ja irrotettavat epäjatkuvuudet, jos sellaisia on?
Asymptootti x = -5 / 8 Ei irrotettavia epäjatkuvuuksia Mitään tekijää ei voi peruuttaa tekijässä lukijalla, joten poistettavia epäjatkuvuuksia (reikiä) ei ole. Asymptoottien ratkaisemiseksi aseta lukija 0: 8x + 5 = 0 8x = -5 x = -5 / 8-käyrä {1 / (8x + 5) -x [-10, 10, -5, 5]}