Opettajanne antama vastaus riippuu siitä, missä olet matematiikan opetuksessa.
Ei ole positiivista tai negatiivista lukua, joka on neliöjuuri
Jos saamme positiivisen numeron, saamme myönteisen vastauksen.
Jos neliöimme negatiivisen numeron, saamme edelleen positiivisen numeron.
Ei ole positiivista tai negatiivista numeroa (todellinen luku), jonka neliö on negatiivinen.
Mutta, Tiedämme, että positiivisten lukujen osalta
Samaa päättelyä noudattaen odotamme:
On ongelma
Ratkaisu on keksiä uusi numero, jonka neliö on
Uuden numeron avulla voimme kirjoittaa
Mutta jos haluamme säilyttää tavallisen aritmeettisen
Mutta meillä on myös
Koska se on vaivaa kirjoittaa ja sanoa
(Matematiikassa
Neliöjuuri-symboli tarkoittaa sitä, jolla ei ole miinusmerkkiä edessä
Mikä on [5 (neliöjuuri 5) + 3 (neliöjuuri 7)] / [4 (neliöjuuri 7) - 3 (neliöjuuri 5)]?
(159 + 29sqrt (35)) / 47 väri (valkoinen) ("XXXXXXXX") olettaen, että en ole suorittanut aritmeettisia virheitä (5 (sqrt (5)) + 3 (sqrt (7)) / (4 (sqrt (7)) - 3 (sqrt (5)) Nimittäjän järkeistäminen kertomalla konjugaatilla: = (5 (sqrt (5)) + 3 (sqrt (7)) / (4 (sqrt (7)) - 3 (sqrt (5)) xx (4 (sqrt (7)) + 3 (sqrt (5)) / (4 (sqrt (7)) + 3 (sqrt (5)) = (20sqrt (35) + 15 ((sqrt (5)) ^ 2) +12 ((sqrt (7)) ^ 2) + 9sqrt (35)) / (16 ((sqrt (7)) ^ 2) -9 ((sqrt (5) ) ^ 2)) = (29sqrt (35) +15 (5) +12 (7)) / (16 (7) -9 (5)) = (29sqrt (35) + 75 + 84) / (112-45 ) = (159 + 29sqrt (35)) / 47
Mikä on (neliöjuuri 2) + 2 (neliöjuuri 2) + (neliöjuuri 8) / (neliöjuuri 3)?
(sqrt (2) + 2sqrt (2) + sqrt8) / sqrt3 sqrt 8 voidaan ilmaista väreinä (punainen) (2sqrt2 lauseke tulee nyt: (sqrt (2) + 2sqrt (2) + väri (punainen) (2sqrt2) ) / sqrt3 = (5 sqrt2) / sqrt3 sqrt 2 = 1,414 ja sqrt 3 = 1,732 (5 xx 1,414) / 1,732 = 7,07 / 1,732 = 4,08
Mikä on neliöjuuri 7 + neliöjuuri 7 ^ 2 + neliöjuuri 7 ^ 3 + neliöjuuri 7 ^ 4 + neliöjuuri 7 ^ 5?
Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) Ensimmäinen asia, jonka voimme tehdä, on perua juuret niistä, joilla on tasaiset voimat. Koska: sqrt (x ^ 2) = x ja sqrt (x ^ 4) = x ^ 2 mihin tahansa numeroon, voimme vain sanoa, että sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) Nyt 7 ^ 3 voidaan kirjoittaa uudelleen nimellä 7 ^ 2 * 7, ja että 7 ^ 2 pääsee ulos juuresta! Sama pätee 7 ^ 5: een, mutta se kirjoitetaan uudelleen nimellä 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) +