ilmaisu tulee nyt:
Mikä on [5 (neliöjuuri 5) + 3 (neliöjuuri 7)] / [4 (neliöjuuri 7) - 3 (neliöjuuri 5)]?
(159 + 29sqrt (35)) / 47 väri (valkoinen) ("XXXXXXXX") olettaen, että en ole suorittanut aritmeettisia virheitä (5 (sqrt (5)) + 3 (sqrt (7)) / (4 (sqrt (7)) - 3 (sqrt (5)) Nimittäjän järkeistäminen kertomalla konjugaatilla: = (5 (sqrt (5)) + 3 (sqrt (7)) / (4 (sqrt (7)) - 3 (sqrt (5)) xx (4 (sqrt (7)) + 3 (sqrt (5)) / (4 (sqrt (7)) + 3 (sqrt (5)) = (20sqrt (35) + 15 ((sqrt (5)) ^ 2) +12 ((sqrt (7)) ^ 2) + 9sqrt (35)) / (16 ((sqrt (7)) ^ 2) -9 ((sqrt (5) ) ^ 2)) = (29sqrt (35) +15 (5) +12 (7)) / (16 (7) -9 (5)) = (29sqrt (35) + 75 + 84) / (112-45 ) = (159 + 29sqrt (35)) / 47
Mikä on neliöjuuri 3 + neliöjuuri 72 - neliöjuuri 128 + neliöjuuri 108?
7sqrt (3) - 2sqrt (2) sqrt (3) + sqrt (72) - sqrt (128) + sqrt (108) Tiedämme, että 108 = 9 * 12 = 3 ^ 3 * 2 ^ 2, joten sqrt (108) = sqrt (3 ^ 3 * 2 ^ 2) = 6sqrt (3) sqrt (3) + sqrt (72) - sqrt (128) + 6sqrt (3) Tiedämme, että 72 = 9 * 8 = 3 ^ 2 * 2 ^ 3, joten sqrt (72) = sqrt (3 ^ 2 * 2 ^ 3) = 6sqrt (2) sqrt (3) + 6sqrt (2) - sqrt (128) + 6sqrt (3) Tiedämme, että 128 = 2 ^ 7 , joten sqrt (128) = sqrt (2 ^ 6 * 2) = 8sqrt (2) sqrt (3) + 6sqrt (2) - 8sqrt (2) + 6sqrt (3) Yksinkertaistaminen 7sqrt (3) - 2sqrt (2)
Mikä on neliöjuuri 7 + neliöjuuri 7 ^ 2 + neliöjuuri 7 ^ 3 + neliöjuuri 7 ^ 4 + neliöjuuri 7 ^ 5?
Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) Ensimmäinen asia, jonka voimme tehdä, on perua juuret niistä, joilla on tasaiset voimat. Koska: sqrt (x ^ 2) = x ja sqrt (x ^ 4) = x ^ 2 mihin tahansa numeroon, voimme vain sanoa, että sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) Nyt 7 ^ 3 voidaan kirjoittaa uudelleen nimellä 7 ^ 2 * 7, ja että 7 ^ 2 pääsee ulos juuresta! Sama pätee 7 ^ 5: een, mutta se kirjoitetaan uudelleen nimellä 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) +