Vastaus:
Parabolan yhtälö on
Selitys:
Keskity osoitteeseen
Vertex on yhtä kaukana fokuksesta ja suoraviivasta.
Joten kärki on
Koska Directrix on yläpuolella, parabola avautuu alaspäin ja
Näin ollen parabolan yhtälö on
kaavio {-1/10 (x-3) ^ 2 + 20,5 -80, 80, -40, 40} Ans
Tomas kirjoitti yhtälön y = 3x + 3/4. Kun Sandra kirjoitti yhtälöään, he huomasivat, että hänen yhtälöstään oli kaikki samat ratkaisut kuin Tomasin yhtälöllä. Mikä yhtälö voisi olla Sandran?
4y = 12x +3 12x-4y +3 = 0 Yhtälöä voidaan antaa monissa muodoissa ja silti tarkoittaa samaa. y = 3x + 3/4 "" (tunnetaan kaltevuus / sieppausmuoto.) Kerrotaan 4: llä fraktion poistamiseksi: 4y = 12x +3 "" rarr 12x-4y = -3 "" (vakiolomake) 12x- 4y +3 = 0 "" (yleinen muoto) Nämä kaikki ovat yksinkertaisimmassa muodossa, mutta meillä voi olla myös äärettömän vaihteluita. 4y = 12x + 3 voidaan kirjoittaa seuraavasti: 8y = 24x +6 "" 12y = 36x +9, "" 20y = 60x +15 jne.
Mikä on yhtälö parabolan vakiomuodossa, jossa painopiste on (-10,8) ja y = 9?
Parabolan yhtälö on (x + 10) ^ 2 = -2y + 17 = -2 (y-17/2) Mikä tahansa parabolan kohta (x, y) on yhtä kaukana tarkennuksesta F = (- 10,8 ) ja suora y = 9 Siksi sqrt ((x + 10) ^ 2 + (y-8) ^ 2) = y-9 (x + 10) ^ 2 + (y-8) ^ 2 = (y- 9) ^ 2 (x + 10) ^ 2 + y ^ 2-16y + 64 = y ^ 2-18y + 81 (x + 10) ^ 2 = -2y + 17 = -2 (y-17/2) kaavio {((x + 10) ^ 2 + 2y-17) (y-9) = 0 [-31,08, 20,25, -9,12, 16,54]}
Mikä on yhtälö parabolan vakiomuodossa, jossa painopiste on (-10, -9) ja y = -4?
Parabolan yhtälö on y = -1/10 (x + 10) ^ 2 -6,5. Tarkennus on (-10, -9) Directrix: y = -4. Vertex on tarkennuksen ja suorakulmion välissä. Niinpä huippu on (-10, (-9-4) / 2) tai (-10, -6,5) ja parabola avautuu alaspäin (a = -ive) Parabolan yhtälö on y = a (xh) ^ 2 = k tai y = a (x - (- 10)) ^ 2+ (-6,5) tai y = a (x + 10) ^ 2 -6,5, jossa (h, k) on huippu. Pisteen ja suorakulman välinen etäisyys d = 6,5-4,0 = 2,5 = 1 / (4 | a |):. a = -1 / (4 * 2,5) = -1/10 Näin ollen parabolan yhtälö on y = -1/10 (x + 10) ^ 2 -6,5-käyrä {-1/10 (x + 10) ^ 2 - 6.5 [-40