Vastaus:
Siitä asti kun
Selitys:
Meillä on
Äärettömän geometrisen sarjan yleinen summa on
Meidän tapauksessamme
Geometriset sarjat lähentyvät vain silloin, kun
Vastaus:
Selitys:
Missä
Meille sanotaan yleinen suhde
Ensimmäinen termi on
Geometrisen sarjan summa annetaan seuraavasti:
Jotta summa loppumattomaan, se yksinkertaistuu:
Meille kerrotaan, että tämä summa on S.
Korvaa arvomme a ja r:
Määritä lukija:
Kerro lukija ja nimittäjä
peruuttaminen:
Mahdollisten arvojen löytämiseksi muistamme, että geometrinen sarja on vain summa äärettömään jos
toisin sanoen
Geometrisen sekvenssin ensimmäinen ja toinen termi ovat vastaavasti lineaarisen sekvenssin ensimmäinen ja kolmas termi Lineaarisen sekvenssin neljäs termi on 10 ja sen ensimmäisen viiden aikavälin summa on 60 Etsi lineaarisen sekvenssin viisi ensimmäistä termiä?
{16, 14, 12, 10, 8} Tyypillinen geometrinen sekvenssi voidaan esittää muodossa c_0a, c_0a ^ 2, cdots, c_0a ^ k ja tyypillinen aritmeettinen sekvenssi c_0a, c_0a + Delta, c_0a + 2Delta, cdots, c_0a + kDelta Soittaminen c_0 a: ksi ensimmäisenä elementtinä geometriselle sekvenssille, jossa meillä on {(c_0 a ^ 2 = c_0a + 2Delta -> "Ensimmäinen ja toinen GS on LS: n ensimmäinen ja kolmas"), (c_0a + 3Delta = 10- > "Lineaarisen sekvenssin neljäs termi on 10"), (5c_0a + 10Delta = 60 -> "Ensimmäisen viiden aikavälin summa on 60"):} c_0, a,
AP: n neljäs termi on yhtä suuri kuin seitsemäs kerta, kun seitsemäs termi ylittää kaksi kertaa kolmannen aikavälin. 1. Etsi ensimmäinen termi ja yhteinen ero?
A = 2/13 d = -15/13 T_4 = 3 T_7 ......... (1) T_4 - 2T_3 = 1 ........ (2) T_n = a + (n- 1) d T_4 = a + 3d T_7 = a + 6d T_3 = a + 2d Korvaavat arvot (1) yhtälössä, a + 3d = 3a + 18d = 2a + 15d = 0 .......... .... (3) Korvaavat arvot (2) yhtälössä, a + 3d - (2a + 4d) = 1 = a + 3d - 2a - 4d = 1 -a -d = 1 a + d = -1. ........... (4) Ratkaisemalla yhtälöt (3) ja (4) samanaikaisesti saamme, d = 2/13 a = -15/13
GP: n neljän ensimmäisen sanamäärän summa on 30 ja neljän viimeisen termin summa on 960. Jos GP: n ensimmäinen ja viimeinen termi ovat vastaavasti 2 ja 512, etsi yhteinen suhde.
2root (3) 2. Oletetaan, että kyseessä olevan GP: n yhteinen suhde (cr) on r ja n ^ (th) termi on viimeinen termi. Koska GP: n ensimmäinen termi on 2.: "GP on" {2,2r, 2r ^ 2,2r ^ 3, .., 2r ^ (n-4), 2r ^ (n-3) , 2r ^ (n-2), 2r ^ (n-1)}. Annettu, 2 + 2r + 2r ^ 2 + 2r ^ 3 = 30 ... (tähti ^ 1), ja 2r ^ (n-4) + 2r ^ (n-3) + 2r ^ (n-2) + 2r ^ (n-1) = 960 ... (tähti ^ 2). Tiedämme myös, että viimeinen termi on 512.:. r ^ (n-1) = 512 .................... (tähti ^ 3). Nyt (tähti ^ 2) rArr r ^ (n-4) (2 + 2r + 2r ^ 2 + 2r ^ 3) = 960, eli (r ^ (n-1)) / r ^ 3 (2 + 2r + 2r ^ 2 +