Vastaus:
Jokaisella viivalla, joka on kohtisuorassa näiden kahden pisteen läpi kulkevaan linjaan, on kaltevuus
Selitys:
Ensinnäkin meidän on löydettävä viivan kaltevuus, joka kulkee ongelman kahden pisteen läpi. Rinne löytyy käyttämällä kaavaa:
Missä
Arvojen korvaaminen ongelman pisteistä antaa:
Kahden pisteen läpi kulkevan linjan kaltevuus on
Tähän linjaan nähden kohtisuorassa linjassa on rinne (kutsutaan sitä
Tai,
Mikä on minkä tahansa linjan (0,6) ja (18,4) läpi kulkevan linjan kaltevuus?
(0,6) ja (18,4): n läpi kulkevaan linjaan nähden kohtisuorassa olevan viivan kaltevuus on 9 (0,6) ja (18,4): n läpi kulkevan viivan kaltevuus on m_1 = (y_2-y_1) / (x_2-x_1) = (4-6) / (18-0) = (-2) / 18 = -1 / 9 kohtisuorien viivojen rinteiden tuote on m_1 * m_2 = -1: .m_2 = -1 / m_1 = -1 / (- 1/9) = 9. Siksi minkä tahansa linjan (0,6) ja (18,4) läpi kulkevan linjan kaltevuus on 9 [Ans]
Mikä on minkä tahansa linjan (10,2) ja (7, -2) läpi kulkevan linjan kaltevuus?
-3/4 Olkoon m pisteiden läpi kulkevan viivan kaltevuus ja m 'on kohtisuorassa linja, joka on kohtisuorassa annetuista pisteistä kulkevaan linjaan nähden. Koska viivat ovat kohtisuorassa, rinteiden tuote on yhtä suuri kuin -1. eli m * m '= - 1 merkitsee m' = - 1 / m merkitsee m '= - 1 / ((y_2-y_1) / (x_2-x_1)) tarkoittaa m' = - (x_2-x_1) / (y_2 -y_1) Olkoon (7, -2) = (x_1, y_1) ja (10,2) = (x_2, y_2) m '= - (10-7) / (2 - (- 2)) = - 3 / (2 + 2) = - 3/4 tarkoittaa m '= - 3/4 Näin ollen vaaditun rivin kaltevuus on -3/4.
Mikä on minkä tahansa linjan (12, -2) ja (7,8) läpi kulkevan linjan kaltevuus?
M = 1/2 Rinne, joka on kohtisuorassa tiettyyn linjaan nähden, olisi tietyn rivin käänteinen kaltevuus m = a / b kohtisuoran kaltevuuden ollessa m = -b / a Kaava laskevan rivin kaltevuudelle kahden koordinaattipisteen jälkeen on m = (y_2-y_1) / (x_2-x_1) Koordinaattipisteille (12, -2) ja (7,8) x_1 = 12 x_2 = 7 y_1 = -2 y_2 = 8 m = ( 8 - (- 2)) / (7-12) m = 10 / -5 Kaltevuus on m = -10/5 = -2/1 kohtisuoran kaltevuuden ollessa vastavuoroinen (-1 / m) m = 1 / 2