Vastaus:
Selitys:
Huomaa, että ensimmäisen kuoleman tulos ei vaikuta toisen lopputulokseen. Meiltä kysytään vain a: n todennäköisyydestä
On
Jos haluat molempien noppien todennäköisyyden, meidän on harkittava todennäköisyyttä saada
Olisimme myös voineet tehdä:
Julie heittää reilun punaisen noppaa kerran ja oikeudenmukaisen sinisen noppaa kerran. Miten voit laskea todennäköisyyden, että Julie saa kuusi punaisella noppaa ja sinistä noppaa. Toiseksi lasketaan todennäköisyys, että Julie saa vähintään yhden kuuden?
P ("Kaksi kuutta") = 1/36 P ("Vähintään yksi kuusi") = 11/36 Todennäköisyys saada kuusi, kun rullaat reilun kuoleman, on 1/6. Itsenäisten tapahtumien A ja B kertomissääntö on P (AnnB) = P (A) * P (B) Ensimmäisessä tapauksessa tapahtuma A saa kuusi punaisella kuolla ja tapahtuma B saa kuusi sinistä kuolla . P (AnnB) = 1/6 * 1/6 = 1/36 Toisessa tapauksessa haluamme ensin tarkastella todennäköisyyttä saada kuusi. Todennäköisyys, että yksi kuoli ei kuole kuusi, on ilmeisesti 5/6, joten käytetään kertolas
Olet tutkinut, kuinka monta ihmistä odottaa rivillä pankkisi perjantaina iltapäivällä klo 15.00, ja olet luonut todennäköisyysjakauman 0, 1, 2, 3 tai 4 henkilölle linjassa. Todennäköisyydet ovat 0,1, 0,3, 0,4, 0,1 ja 0,1. Mikä on todennäköisyys, että enintään 3 henkilöä on linjassa perjantaina iltapäivällä klo 15.00?
Rivi olisi enintään 3 henkilöä. P (X = 0) + P (X = 1) + P (X = 2) + P (X = 3) = 0,1 + 0,3 + 0,4 + 0,1 = 0,9 Näin P (X <= 3) = 0,9 Näin kysymys olisi olla helpompaa käyttää kohtelusääntöä, sillä sinulla on yksi arvo, jota et ole kiinnostunut, joten voit vain poistaa sen pois koko todennäköisyydestä. kuten: P (X = 3) = 1 - P (X> = 4) = 1 - P (X = 4) = 1 - 0,1 = 0,9 Siten P (X <= 3) = 0,9
Olet tutkinut, kuinka monta ihmistä odottaa rivillä pankkisi perjantaina iltapäivällä klo 15.00, ja olet luonut todennäköisyysjakauman 0, 1, 2, 3 tai 4 henkilölle linjassa. Todennäköisyydet ovat 0,1, 0,3, 0,4, 0,1 ja 0,1. Mikä on todennäköisyys, että vähintään 3 henkilöä on linjassa perjantaina iltapäivällä klo 15.00?
Tämä on JOKA ... TAI tilanne. Voit lisätä todennäköisyyksiä. Edellytykset ovat yksinomaan: et voi olla 3–4 henkilöä rivillä. On 3 henkilöä tai 4 henkilöä linjassa. Lisää näin: P (3 tai 4) = P (3) + P (4) = 0,1 + 0,1 = 0,2 Tarkista vastaus (jos sinulla on jäljellä aikaa testin aikana) laskemalla vastakkainen todennäköisyys: P (<3) = P (0) + P (1) + P (2) = 0,1 + 0,3 + 0,4 = 0,8 Ja tämä ja vastaus lisää jopa 1,0, kuten pitäisi.