Mikä on yhtälö riville, joka kulkee rinteessä, joka kulkee läpi (4, -8) ja jonka kaltevuus on 2?
Y = 2x - 16> Rinteen yhtälö kaltevuuslohkomuodossa on väri (punainen) (| bar (ul (väri (valkoinen) (a / a) väri (musta) (y = mx + b) väri (valkoinen) (a / a) |))) jossa m edustaa kaltevuutta ja b, y-leikkausta. täällä on annettu rinne = 2 ja niin osittainen yhtälö on y = 2x + b Nyt löytää b käyttämällä pistettä (4, -8), jonka linja kulkee. Korvaa x = 4 ja y = -8 osittaiseen yhtälöön. näin ollen: -8 = 8 + b b = -16, jolloin yhtälö on: y = 2x - 16
Mikä on yhtälö rivistä, joka kulkee risteyksessä, joka kulkee pisteen (7, 2) läpi ja jonka kaltevuus on 4?
Y = 4x-26 Linjan kaltevuuslukitusmuoto on: y = mx + b, jossa: m on linjan b kaltevuus y-sieppaa Meille annetaan, että m = 4 ja linja kulkee (7, 2). : .2 = 4 * 7 + b 2 = 28 + b b = -26 Näin ollen linjan yhtälö on: y = 4x-26-käyrä {y = 4x-26 [-1.254, 11.23, -2.92, 3.323]}
Mikä on y = x + 5: n rinnakkaisen linjan kaltevuus? Mikä on linjan, joka on kohtisuorassa j = x + 5, kaltevuus?
1 "ja" -1> "rivin yhtälö" väri (sininen) "rinne-sieppausmuodossa on. • väri (valkoinen) (x) y = mx + b "jossa m on kaltevuus ja b y-sieppaus" y = x + 5 "on tässä muodossa" "ja kaltevuus" = m = 1 • " yhtä suuret rinteet "rArr", joka on linjan "y = x + 5" suuntainen kaltevuus, on "m = 1", kun rivi, jossa on kaltevuus m, on "kohtisuorassa" olevan viivan kaltevuus • väri (valkoinen) (x) m_ (väri (punainen) "kohtisuorassa") = - 1 / m rArrm_ (väri (punainen) "koht