Vastaus:
On monia kohtia.
Esimerkiksi: (2, -16) tai (0, 8) tai (-3, 4)
Selitys:
Huomaa, että y lasketaan arvosta x.
Yhtälö lukee
"y löytyy ottamasta mitään x-arvoa, kertomalla se -4: lla ja vähentämällä sitten 8."
Jos haluat löytää koordinaatit, tee juuri niin, valitse ja x-arvo ja korvaa se yhtälöön. vastaus on y-arvo.
Jos valitsen x:
x = 2,
x = 0,
x = -3
Voit valita minkä tahansa arvon x: lle ja määrittää sitten vastaavan y-arvon.
Olet tutkinut, kuinka monta ihmistä odottaa rivillä pankkisi perjantaina iltapäivällä klo 15.00, ja olet luonut todennäköisyysjakauman 0, 1, 2, 3 tai 4 henkilölle linjassa. Todennäköisyydet ovat 0,1, 0,3, 0,4, 0,1 ja 0,1. Mikä on todennäköisyys, että enintään 3 henkilöä on linjassa perjantaina iltapäivällä klo 15.00?
Rivi olisi enintään 3 henkilöä. P (X = 0) + P (X = 1) + P (X = 2) + P (X = 3) = 0,1 + 0,3 + 0,4 + 0,1 = 0,9 Näin P (X <= 3) = 0,9 Näin kysymys olisi olla helpompaa käyttää kohtelusääntöä, sillä sinulla on yksi arvo, jota et ole kiinnostunut, joten voit vain poistaa sen pois koko todennäköisyydestä. kuten: P (X = 3) = 1 - P (X> = 4) = 1 - P (X = 4) = 1 - 0,1 = 0,9 Siten P (X <= 3) = 0,9
Olet tutkinut, kuinka monta ihmistä odottaa rivillä pankkisi perjantaina iltapäivällä klo 15.00, ja olet luonut todennäköisyysjakauman 0, 1, 2, 3 tai 4 henkilölle linjassa. Todennäköisyydet ovat 0,1, 0,3, 0,4, 0,1 ja 0,1. Mikä on todennäköisyys, että vähintään 3 henkilöä on linjassa perjantaina iltapäivällä klo 15.00?
Tämä on JOKA ... TAI tilanne. Voit lisätä todennäköisyyksiä. Edellytykset ovat yksinomaan: et voi olla 3–4 henkilöä rivillä. On 3 henkilöä tai 4 henkilöä linjassa. Lisää näin: P (3 tai 4) = P (3) + P (4) = 0,1 + 0,1 = 0,2 Tarkista vastaus (jos sinulla on jäljellä aikaa testin aikana) laskemalla vastakkainen todennäköisyys: P (<3) = P (0) + P (1) + P (2) = 0,1 + 0,3 + 0,4 = 0,8 Ja tämä ja vastaus lisää jopa 1,0, kuten pitäisi.
Olet tutkinut, kuinka monta ihmistä odottaa rivillä pankkisi perjantaina iltapäivällä klo 15.00, ja olet luonut todennäköisyysjakauman 0, 1, 2, 3 tai 4 henkilölle linjassa. Todennäköisyydet ovat 0,1, 0,3, 0,4, 0,1 ja 0,1. Mikä on odotettavissa oleva määrä ihmisiä (keskiarvoa) odottamassa linjaa perjantaina iltapäivällä klo 15.00?
Tässä tapauksessa odotettavissa oleva määrä voidaan pitää painotettuna keskiarvona. On paras saavuttaa summaamalla kyseisen numeron todennäköisyys. Tässä tapauksessa: 0,1 * 0 + 0,3 * 1 + 0,4 * 2 + 0,1 * 3 + 0,1 * 4 = 1,8