Vastaus:
Todennäköisyysperiaatteilla on monia käyttötarkoituksia. Niitä käytetään genetiikassa, tilastoissa, kemiassa ja monissa muissa paikoissa.
Selitys:
Klassisessa genetiikassa todennäköisyyttä käytetään laskemaan todennäköisyys saada tietty geneettisen ristin tulos.
Historiallisesti klassisen genetiikan hypoteesi perustui todennäköisyysennusteisiin. Koska ristien tulos vastasi teorian ennusteita.
Esimerkiksi jos sinulla on kaksi sinistä silmää ja ruskeat silmät.
Molemmilla vanhemmilla on ruskeat silmät. Lasten risti ennustaa, että 1/4 jälkeläisistä on siniset silmät ja 3/4 ruskeat silmät. Pienessä populaatiossa tulos ei välttämättä vastaa ennusteita. Mitä suurempi väestö on, sitä lähempänä tulos on todennäköisyyteen perustuviin ennusteisiin.
Olet tutkinut, kuinka monta ihmistä odottaa rivillä pankkisi perjantaina iltapäivällä klo 15.00, ja olet luonut todennäköisyysjakauman 0, 1, 2, 3 tai 4 henkilölle linjassa. Todennäköisyydet ovat 0,1, 0,3, 0,4, 0,1 ja 0,1. Mikä on todennäköisyys, että enintään 3 henkilöä on linjassa perjantaina iltapäivällä klo 15.00?
Rivi olisi enintään 3 henkilöä. P (X = 0) + P (X = 1) + P (X = 2) + P (X = 3) = 0,1 + 0,3 + 0,4 + 0,1 = 0,9 Näin P (X <= 3) = 0,9 Näin kysymys olisi olla helpompaa käyttää kohtelusääntöä, sillä sinulla on yksi arvo, jota et ole kiinnostunut, joten voit vain poistaa sen pois koko todennäköisyydestä. kuten: P (X = 3) = 1 - P (X> = 4) = 1 - P (X = 4) = 1 - 0,1 = 0,9 Siten P (X <= 3) = 0,9
Olet tutkinut, kuinka monta ihmistä odottaa rivillä pankkisi perjantaina iltapäivällä klo 15.00, ja olet luonut todennäköisyysjakauman 0, 1, 2, 3 tai 4 henkilölle linjassa. Todennäköisyydet ovat 0,1, 0,3, 0,4, 0,1 ja 0,1. Mikä on todennäköisyys, että vähintään 3 henkilöä on linjassa perjantaina iltapäivällä klo 15.00?
Tämä on JOKA ... TAI tilanne. Voit lisätä todennäköisyyksiä. Edellytykset ovat yksinomaan: et voi olla 3–4 henkilöä rivillä. On 3 henkilöä tai 4 henkilöä linjassa. Lisää näin: P (3 tai 4) = P (3) + P (4) = 0,1 + 0,1 = 0,2 Tarkista vastaus (jos sinulla on jäljellä aikaa testin aikana) laskemalla vastakkainen todennäköisyys: P (<3) = P (0) + P (1) + P (2) = 0,1 + 0,3 + 0,4 = 0,8 Ja tämä ja vastaus lisää jopa 1,0, kuten pitäisi.
80%: ssa tapauksista työntekijä käyttää bussia menemään töihin.Jos hän ottaa bussin, on todennäköisyys, että saavutetaan ajoissa 3/4. Keskimäärin 4 päivää 6: sta saapuu ajoissa töihin. työntekijä ei saapunut ajoissa töihin. Mikä on todennäköisyys, että hän otti bussin?
0,6 P ["hän ottaa väylän"] = 0,8 P ["hän on ajoissa | ottaa väylän"] = 0,75 P ["hän on ajoissa"] = 4/6 = 2/3 P ["hän ottaa väylän | hän ei ole ajoissa "] =? P ["hän ottaa väylän | hän ei ole ajoissa"] * P ["hän ei ole ajoissa"] = P ["hän ottaa väylän JA EI ole ajoissa"] = P ["hän ei ole ajoissa | hän ottaa väylän "] * P [" hän ottaa väylän "] = (1-0,75) * 0,8 = 0,25 * 0,8 = 0,2 => P [" hän otta