Vastaus:
Selitys:
Yhtälö st
Jälleen se kulkee
Niin
Näin ollen vaadittu yhtälö on
Vastaus:
Linjan yhtälö on
Selitys:
Viivan kaltevuus
Vastaus:
Kaavion viiva on yhdensuuntainen
Selitys:
Vakioyhtälömuoto
M m on gradientti
Huomaa, että kaltevuus on ylös- tai alaspäin kulkevan määrän määrä. Ajattele kukkulan kaltevuutta.
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Ottaen huomioon;
kerroin
Niin
Meille kerrotaan, että se kulkee pisteen läpi
Joten korvaamalla meillä on
Lisätä
Niin
Linjan yhtälö on -3y + 4x = 9. Miten kirjoitat yhtälön viivasta, joka on yhdensuuntainen linjan kanssa ja kulkee pisteen läpi (-12,6)?
Y-6 = 4/3 (x + 12) Käytämme pisteiden gradienttimuotoa, koska meillä on jo piste, jonka linja kulkee (-12,6) ja sana rinnakkain tarkoittaa, että kahden rivin kaltevuus on oltava sama. jotta löydettäisiin rinnakkaisviivan kaltevuus, meidän on löydettävä sen viivan kaltevuus, jonka kanssa se on samansuuntainen. Tämä rivi on -3y + 4x = 9, joka voidaan yksinkertaistaa y = 4 / 3x-3. Tämä antaa meille 4/3: n gradientin nyt, kun kirjoitetaan yhtälö, jonka se laittaa tähän kaavaan y-y_1 = m (x-x_1), olivat (x_1, y_1) piste, jonka ne kulkevat
Mikä on yhtälö linjalle, joka kulkee pisteen (3,4) läpi, ja joka on yhdensuuntainen linjan kanssa yhtälön y + 4 = -1 / 2 (x + 1) kanssa?
Linjan yhtälö on y-4 = -1/2 (x-3) [Viivan y + 4 = -1 / 2 (x + 1) tai y = -1 / 2x -9/2 kaltevuus on saatu vertaamalla linjan y = mx + c yleistä yhtälöä m = -1 / 2. Rinnakkaisten viivojen kaltevuus on yhtä suuri. (3,4): n läpi kulkevan linjan yhtälö on y-y_1 = m (x-x_1) ory-4 = -1/2 (x-3) [Ans]
Todista, että jos linja ja kohta eivät ole kyseisellä rivillä, on täsmälleen yksi rivi, joka kulkee kyseisen pisteen kautta kohtisuorassa kyseisen linjan kautta? Voit tehdä tämän matemaattisesti tai rakentamisen kautta (muinaiset kreikkalaiset)?
Katso alempaa. Oletetaan, että antama rivi on AB, ja piste on P, joka ei ole AB: ssä. Oletetaan nyt, että olemme vetäneet AB: n kohtisuoran PO: n. Meidän on todistettava, että tämä PO on ainoa linja, joka kulkee P: n läpi, joka on kohtisuorassa AB: ään. Nyt käytämme rakennetta. Rakennetaan toinen kohtisuora PC AB: lle pisteestä P. Now The Proof. Meillä on OP-kohtisuorassa AB [En voi käyttää kohtisuoraa merkkiä, miten annyoing] Ja myös PC: n kohtisuoraa AB. Joten, OP || PC. [Molemmat ovat kohtisuorassa samassa linjassa.] Nyt