Oletetaan, että työn suorittamiseen kuluva aika on kääntäen verrannollinen työntekijöiden määrään. Toisin sanoen, mitä enemmän työntekijöitä työelämässä on, sitä vähemmän aikaa tarvitaan työn suorittamiseen. Onko aikaa 2 työntekijää 8 päivää aikaa tehdä työtä, kuinka kauan se kestää 8 työntekijää?
8 työntekijää viimeistelee työn 2 päivän kuluessa. Anna työntekijöiden lukumäärä w ja työpäivän päättymispäivämäärä d. Sitten w prop 1 / d tai w = k * 1 / d tai w * d = k; w = 2, d = 8:. k = 2 * 8 = 16: .w * d = 16. [k on vakio]. Näin ollen työn yhtälö on w * d = 16; w = 8, d =? :. d = 16 / w = 16/8 = 2 päivää. 8 työntekijää viimeistelee työn 2 päivän kuluessa. [Ans]
Keskimääräinen postinkuljettaja kävelee 4,8 kilometriä työpäivänä. Kuinka pitkälle useimmat postin harjoittajat kävelevät 6 päivän viikossa? Heinäkuussa on 27 työpäivää, joten kuinka pitkälle postialan kuljettaja kävelee heinäkuussa? 288 metriä?
28,8 km = 28 800 m 6 päivässä 129,6 km 27 päivässä heinäkuussa. 4,8 km kävelet yhdessä päivässä. Joten 6 päivän viikossa: 4,8 xx 6 = 28,8 km = 28,800 m Heinäkuussa 27 työpäivää: DIstance = 4,8 xx 27 = 129,6 km
Millä eksponentilla minkä tahansa luvun teho muuttuu 0: ksi? Kuten tiedämme, että (mikä tahansa numero) ^ 0 = 1, niin mikä on x: n arvo (missä tahansa numerossa) ^ x = 0?
Katso alla Olkoon z on kompleksiluku, jossa on rakenne z = rho e ^ {i phi}, jossa rho> 0, rho RR: ssä ja phi = arg (z) voimme esittää tämän kysymyksen. Mitä n arvoja RR: ssä esiintyy z ^ n = 0? Hieman enemmän z ^ n = rho ^ ne ^ {in phi} = 0-> e ^ {in phi} = 0, koska hypoteesin rho> 0. Siten käyttäen Moivren identiteettiä e ^ {in phi} = cos (n phi ) + i sin (n phi), sitten z ^ n = 0-> cos (n phi) + i sin (n phi) = 0-> n phi = pi + 2k pi, k = 0, pm1, pm2, pm3, cdots Lopuksi n = (pi + 2k pi) / phi, k = 0, pm1, pm2, pm3, cdots saamme z ^ n = 0