Vastaus:
Selitys:
Pythagorien teoreemassa todetaan, että
missä:
# A # on kolmion ensimmäinen osa
# B # on kolmion toinen osa
# C # on kolmion hypotenuusio (pisin sivu)
Joten saamme:
Oikean kolmion yksi jalka on 3,2 senttimetriä pitkä. Toisen jalan pituus on 5,7 cm. Mikä on hypotenuksen pituus?
Oikean kolmion hypotenus on 6,54 (2 dp) cm pitkä. Olkoon righr-kolmion ensimmäinen jalka l_1 = 3,2 cm. Righr-kolmion toinen jalka on l_2 = 5,7 cm. Oikean kolmion hypotenuse on h = sqrt (l_1 ^ 2 + l_2 ^ 2) = sqrt (3,2 ^ 2 + 5,7 ^ 2) = sqrt42.73 = 6.54 (2dp) cm.
Yksi oikean kolmion jalka on 96 tuumaa. Miten löydät hypotenuksen ja toisen jalan, jos hypotenuksen pituus ylittää 2,5 kertaa toisen jalan 4 tuumaa?
Käytä Pythagoraa x = 40: n ja h = 104: n luomiseksi. Olkoon x toinen jalka, sitten hypotenuusu h = 5 / 2x +4. 2 = h ^ 2 x ^ 2 + 96 ^ 2 = (5 / 2x + 4) ^ 2 x ^ 2 + 9216 = 25x ^ 2/4 + 20x +16 Uudelleenjärjestely antaa meille x ^ 2 - 25x ^ 2/4 - 20x +9200 = 0 Kerro kaikkiaan -4 21x ^ 2 + 80x -36800 = 0 Käyttämällä neliökaavaa x = (-b + -sqrt (b ^ 2 - 4ac)) / (2a) x = (- (80) + - sqrt (6400 + 3091200)) / (- 42) x = (-80 + -1760) / 42 niin x = 40 tai x = -1840/42 Voimme jättää negatiivisen vastauksen huomiottaessamme todellista kolmioa, niin toinen jalka = 40 Hypoteeni h = 5
Yksi oikean kolmion jalka on 96 tuumaa. Miten löydät hypotenuksen ja toisen jalan, jos hypotenuksen pituus ylittää 2 kertaa toisen jalan 4 tuumaa?
Hypotenuse 180,5, jalat 96 ja 88,25 noin. Olkoon tunnettu jalka c_0, hypotenuusu on h, h yli 2c: n ylimääräinen delta ja tuntematon jalka, c. Tiedämme, että c ^ 2 + c_0 ^ 2 = h ^ 2 (Pytagoras) myös h-2c = delta. Tekstitys h: n mukaan: c ^ 2 + c_0 ^ 2 = (2c + delta) ^ 2. Yksinkertaistaminen, c ^ 2 + 4 delta c + delta ^ 2-c_0 ^ 2 = 0. Ratkaistaan c: lle. c = (-4delta pm sqrt (16delta ^ 2-4 (delta ^ 2-c_0 ^ 2))) / 2 Vain positiiviset ratkaisut sallitaan c = (2sqrt (4delta ^ 2-delta ^ 2 + c_0 ^ 2) -4delta ) / 2 = sqrt (3delta ^ 2 + c_0 ^ 2) -2delta