Sine lain avulla tiedämme
# A / Sinä = b / sinB = c / sinc = 2R #
Nyt
1. osa
# (B ^ 2-c ^ 2) cotA #
# = (4R ^ 2sin ^ 2B-4R ^ 2sin ^ 2C) cotA #
# = 4R ^ 2 (1/2 (1-cos2B) -1/2 (1-cos2C) cotA #
# = 4R ^ 2xx1 / 2 (cos2C-cos2B) cotA #
# = 2R ^ 2xx2sin (B + C) sin (B-C) cosa / sina #
# = 4R ^ 2sin (pi-A) sin (B-C) cosa / sina #
# = 4R ^ 2sinAsin (B-C) cosa / sina #
# = 4R ^ 2sin (B-C) cosa #
# = 4R ^ 2 (sinBcosCcosA-cosBsinCcosA) #
samalla lailla
2. osa # = (C ^ 2-a ^ 2) CoTb #
# = 4R ^ 2 (sinCcosAcosB-cosCsinAcosB) #
3. osa # = (A ^ 2-b ^ 2) cotC #
# = 4R ^ 2 (sinAcosBcosC-cosAsinBcosC) #
Lisätään kolme osaa
Koko ilme
# (B ^ 2-c ^ 2) cotA + (c ^ 2-a ^ 2) CoTb + (a ^ 2-b ^ 2) cotC = 0 #