Oletetaan, että minulla ei ole kaavaa g (x): lle, mutta tiedän, että g (1) = 3 ja g '(x) = sqrt (x ^ 2 + 15) kaikille x: lle. Miten lineaarista likiarvoa käytetään arvioimaan g (0,9) ja g (1.1)?
Pidä minut hieman mukana, mutta siihen liittyy rivin kaltevuusviiva yhtälö, joka perustuu ensimmäiseen johdannaiseen ... Ja haluan johtaa teitä vastaamaan, ei vain antamaan vastauksen ... Okei Ennen kuin saan vastauksen, annan sinut sisään (hieman) humoristiseen keskusteluun, jonka toimistani kaveri ja minulla oli ... Minulla: "Okei, waitasec ... Et tiedä g (x), mutta tiedät, että johdannainen on totta kaikille (x) ... Miksi haluat tehdä lineaarisen tulkinnan johdannaisen perusteella? Ota vain johdannaisen integraali, ja sinulla on alkuperäinen kaava ... Oike
Oletetaan, että X on jatkuva satunnaismuuttuja, jonka todennäköisyystiheysfunktio on: f (x) = k (2x - x ^ 2) 0 <x <2: lle; 0 kaikille muille x: lle. Mikä on arvo k, P (X> 1), E (X) ja Var (X)?
K = 3/4 P (x> 1) = 1/2 E (X) = 1 V (X) = 1/5 K: n löytämiseksi käytämme int_0 ^ 2f (x) dx = int_0 ^ 2k (2x-x ^ 2) dx = 1:. k [2x ^ 2/2-x ^ 3/3] _0 ^ 2 = 1 k (4-8 / 3) = 1 => 4 / 3k = 1 => k = 3/4 P (x> 1) laskemiseksi ), käytämme P (X> 1) = 1-P (0 <x <1) = 1-int_0 ^ 1 (3/4) (2x-x ^ 2) = 1-3 / 4 [2x ^ 2 / 2-x ^ 3/3] _0 ^ 1 = 1-3 / 4 (1-1 / 3) = 1-1 / 2 = 1/2 E (X) E (X) = int_0 ^ 2xf (x ) dx = int_0 ^ 2 (3/4) (2x ^ 2-x ^ 3) dx = 3/4 [2x ^ 3/3-x ^ 4/4] _0 ^ 2 = 3/4 (16 / 3- 16/4) = 3/4 * 16/12 = 1 V (X) V (X) = E (X ^ 2) - (E (X)) ^ 2 = E (X ^ 2) -1 E: n laskemiseksi (X ^ 2)
Keskimääräinen postinkuljettaja kävelee 4,8 kilometriä työpäivänä. Kuinka pitkälle useimmat postin harjoittajat kävelevät 6 päivän viikossa? Heinäkuussa on 27 työpäivää, joten kuinka pitkälle postialan kuljettaja kävelee heinäkuussa? 288 metriä?
28,8 km = 28 800 m 6 päivässä 129,6 km 27 päivässä heinäkuussa. 4,8 km kävelet yhdessä päivässä. Joten 6 päivän viikossa: 4,8 xx 6 = 28,8 km = 28,800 m Heinäkuussa 27 työpäivää: DIstance = 4,8 xx 27 = 129,6 km