Vastaus:
Selitys:
# "Huomaa, että" sqrtaxxsqrta = (sqrta) ^ 2 = a #
# Y = sqrt ((4x + 1) / (3x-3)) #
#color (sininen) "molemmille puolille" #
# Y ^ 2 = (sqrt ((4x + 1) / (3x-3))) ^ 2 #
# RArry ^ 2 = (4x + 1) / (3x-3) #
# RArry ^ 2 (3x-3) = 4x + 1larrcolor (sininen) "rajat kertomalla" #
# RArr3xy ^ 2-3y ^ 2 = 4 x + 1 #
# rArr3xy ^ 2-4x = 1 + 3y ^ 2larrcolor (sininen) "kerätä termejä x: ssä" #
#rArrx (3y ^ 2-4) = 1 + 3 y ^ 2larrcolor (sininen) "factorising" #
# RArrx = (1 + 3 y ^ 2) / (3 y ^ 2-4) ja (y! = + - 4/3) #
#color (sininen) "Tarkista" #
# "anna x = 2" #
# "sitten" y = sqrt (9/3) = sqrt3 #
# "korvaa x: n ilmaisun, jonka pitäisi saada 2" #
# X = (1 + 3 (sqrt3) ^ 2) / (3 (sqrt (3) ^ 2-4)) = (1 + 9) / (9-4) = 10/5 = 2 #
Mikä on (sqrt (5+) sqrt (3)) / (sqrt (3+) sqrt (3+) sqrt (5)) - (sqrt (5-) sqrt (3)) / (sqrt (3+) sqrt (3-) sqrt (5))?
2/7 Otamme, A = (sqrt5 + sqrt3) / (sqrt3 + sqrt3 + sqrt5) - (sqrt5-sqrt3) / (sqrt3 + sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5 -sqrt3) / (2sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5-sqrt3) / (2sqrt3-sqrt5) = ((sqrt5 + sqrt3) (2sqrt3-sqrt5) - (sqrt5-sqrt3) ) (2sqrt3 + sqrt5)) / ((2sqrt3 + sqrt5) (2sqrt3-sqrt5) = ((2sqrt15-5 + 2 * 3-sqrt15) - (2sqrt15 + 5-2 * 3-sqrt15)) / ((2sqrt3) ^ 2- (sqrt5) ^ 2) = (peruuta (2sqrt15) -5 + 2 * 3kanta (-sqrt15) - peruuta (2sqrt15) -5 + 2 * 3 + peruuta (sqrt15)) / (12-5) = ( -10 + 12) / 7 = 2/7 Huomaa, että jos nimittäjät ovat (sqrt3 + sqrt (3
Miten yksinkertaistat (1 / sqrt (a-1) + sqrt (a + 1)) / (1 / sqrt (a + 1) -1 / sqrt (a-1)) div sqrt (a + 1) / ( (a-1) sqrt (a + 1) - (a + 1) sqrt (a-1)), a> 1?
Valtava matematiikan muotoilu ...> väri (sininen) (((1 / sqrt (a-1) + sqrt (a + 1)) / (1 / sqrt (a + 1) -1 / sqrt (a-1)) ) / (sqrt (a + 1) / ((a-1) sqrt (a + 1) - (a + 1) sqrt (a-1))) = väri (punainen) (((1 / sqrt (a- 1) + sqrt (a + 1)) / ((sqrt (a-1) -sqrt (a + 1)) / (sqrt (a + 1) cdot sqrt (a-1)))) / (sqrt (a +1) / (sqrt (a-1) cdot sqrt (a-1) cdot sqrt (a + 1) -sqrt (a + 1) cdot sqrt (a + 1) sqrt (a-1))) = väri ( sininen) (((1 / sqrt (a-1) + sqrt (a + 1)) / ((sqrt (a-1) -sqrt (a + 1)) / (sqrt (a + 1) cdot sqrt (a -1)))) / (sqrt (a + 1) / (sqrt (a + 1) cdot sqrt (a-1) (sqrt (a-1) -sqrt (a + 1))) = vä
Ratkaise seuraava yhtälöjärjestelmä: [((1), sqrt (2) x + sqrt (3) y = 0), ((2), x + y = sqrt (3) -sqrt (2))]?
{(x = (3sqrt (2) -2sqrt (3)) / (sqrt (6) -2)), (y = (sqrt (6) -2) / (sqrt (2) -sqrt (3))) :} Alkaen (1) meillä on sqrt (2) x + sqrt (3) y = 0 Molempien puolien jakaminen sqrt (2) antaa meille x + sqrt (3) / sqrt (2) y = 0 "(*)" Jos vähennämme "(*)" (2): sta, saamme x + y- (x + sqrt (3) / sqrt (2) y) = sqrt (3) -sqrt (2) - 0 => (1 sqrt (3) / sqrt (2)) y = sqrt (3) -sqrt (2) => y = (sqrt (3) -sqrt (2)) / (1-sqrt (3) / sqrt (2)) = (sqrt (6) -2) / (sqrt (2) -sqrt (3)) Jos korvaamme y: lle löydetyn arvon takaisin ("*)" saamme x + sqrt (3) / sqrt (2) * (sqrt (6) -2) / (sqrt