Miten yksinkertaistat ln ((5e ^ x) - (10e ^ 2x))?

Miten yksinkertaistat ln ((5e ^ x) - (10e ^ 2x))?
Anonim

Vastaus:

Jos tarkoitat #ln ((5e ^ x) - (10e ^ (2 x))) #

Sitten voit tehdä sen # E ^ x # ja käyttö #ln (a * b) = LNA + lnb #

# X + LN5 + ln (1-2e ^ x): #

Selitys:

Se ei voi oikeastaan. Et voi yksinkertaistaa polynomeja, joilla on eksponentiaalisia toimintoja. Se seikka, että se on substraatiota (eikä kerrotusta tai jakoa), ei jätä tilaa yksinkertaistuksille.

Kuitenkin, jos tarkoitit #ln ((5e ^ x) - (10e ^ (2 x))) #

#ln (5e ^ X-10e Ax * e ^ x): #

Tekijä # 5e ^ x #:

#ln (5 * e ^ x * (1-2e ^ x)) #

Kiinteistön käyttö #ln (a * b * c) = LNA + lnb + pvm # antaa:

# LN5 + LNE ^ x + ln (1-2e ^ x): #

Siitä asti kun # Ln = log_e #

# LN5 + x + ln (1-2e ^ x): #