Vastaus:
Katso ratkaisuprosessia alla:
Selitys:
Ratkaisun ratkaisemiseksi voimme käyttää rinnakkaislohkokaavaa. Lineaarisen yhtälön kaltevuuslohkon muoto on:
Missä
Ensinnäkin voimme korvata ongelman ongelman kaavaksi:
Seuraavaksi voimme korvata arvot ongelman kohdasta
Voimme nyt korvata rinteen ongelmasta ja arvosta
Mikä on yhtälö linjasta (kaltevuus-leikkausmuodossa), jonka kaltevuus on 3 ja joka kulkee (2,5)?
Y = 3x-1 Rivin yhtälö (sininen) "piste-kaltevuus" on. väri (punainen) (bar (ul (| väri (valkoinen) (2/2) väri (musta) (y-y_1 = m (x-x_1)) väri (valkoinen) (2/2) |))) jossa m edustaa kaltevuutta ja (x_1, y_1) "pistettä rivillä" Tässä m = 3 "ja" (x_1, y_1) = (2,5), joka korvaa yhtälöön. y-5 = 3 (x-2) rArry-5 = 3x-6 rArry = 3x-1 "on yhtälö" värin (sininen) "kaltevuuslukitusmuoto"
Mikä on yhtälö rivistä, joka kulkee risteyksessä, joka kulkee pisteen (7, 2) läpi ja jonka kaltevuus on 4?
Y = 4x-26 Linjan kaltevuuslukitusmuoto on: y = mx + b, jossa: m on linjan b kaltevuus y-sieppaa Meille annetaan, että m = 4 ja linja kulkee (7, 2). : .2 = 4 * 7 + b 2 = 28 + b b = -26 Näin ollen linjan yhtälö on: y = 4x-26-käyrä {y = 4x-26 [-1.254, 11.23, -2.92, 3.323]}
Kirjoita yhtälön piste-kaltevuuslomake ilmoitetun pisteen läpi kulkevan tietyn kaltevuuden kanssa. A.) linja, jonka kaltevuus -4 kulkee (5,4). ja myös B.) viiva, jonka kaltevuus 2 kulkee (-1, -2). auta, tämä hämmentävä?
Y-4 = -4 (x-5) "ja" y + 2 = 2 (x + 1)> "" värin (sininen) "piste-kaltevuusmuodon rivin yhtälö on. • väri (valkoinen) (x) y-y_1 = m (x-x_1) "jossa m on rinne ja" (x_1, y_1) "rivin" (A) "piste, jossa on" m = -4 "ja "(x_1, y_1) = (5,4)" korvaa nämä arvot yhtälöön antaa "y-4 = -4 (x-5) larrcolor (sininen)" piste-kaltevuusmuodossa "(B)", joka on annettu "m = 2 "ja" (x_1, y_1) = (- 1, -2) y - (- 2)) = 2 (x - (- 1)) rArry + 2 = 2 (x + 1) larrcolor (sininen) " piste-kaltevuus