Vastaus:
Selitys:
Jos linjalla on kaltevuus
Täällä kaltevuus
Vaadittu yhtälö on
Näin ollen vaadittu yhtälö on
Tomas kirjoitti yhtälön y = 3x + 3/4. Kun Sandra kirjoitti yhtälöään, he huomasivat, että hänen yhtälöstään oli kaikki samat ratkaisut kuin Tomasin yhtälöllä. Mikä yhtälö voisi olla Sandran?
4y = 12x +3 12x-4y +3 = 0 Yhtälöä voidaan antaa monissa muodoissa ja silti tarkoittaa samaa. y = 3x + 3/4 "" (tunnetaan kaltevuus / sieppausmuoto.) Kerrotaan 4: llä fraktion poistamiseksi: 4y = 12x +3 "" rarr 12x-4y = -3 "" (vakiolomake) 12x- 4y +3 = 0 "" (yleinen muoto) Nämä kaikki ovat yksinkertaisimmassa muodossa, mutta meillä voi olla myös äärettömän vaihteluita. 4y = 12x + 3 voidaan kirjoittaa seuraavasti: 8y = 24x +6 "" 12y = 36x +9, "" 20y = 60x +15 jne.
Mikä on yhtälö linjasta (kaltevuus-leikkausmuodossa), jonka kaltevuus on 3 ja joka kulkee (2,5)?
Y = 3x-1 Rivin yhtälö (sininen) "piste-kaltevuus" on. väri (punainen) (bar (ul (| väri (valkoinen) (2/2) väri (musta) (y-y_1 = m (x-x_1)) väri (valkoinen) (2/2) |))) jossa m edustaa kaltevuutta ja (x_1, y_1) "pistettä rivillä" Tässä m = 3 "ja" (x_1, y_1) = (2,5), joka korvaa yhtälöön. y-5 = 3 (x-2) rArry-5 = 3x-6 rArry = 3x-1 "on yhtälö" värin (sininen) "kaltevuuslukitusmuoto"
Kirjoita yhtälön piste-kaltevuuslomake ilmoitetun pisteen läpi kulkevan tietyn kaltevuuden kanssa. A.) linja, jonka kaltevuus -4 kulkee (5,4). ja myös B.) viiva, jonka kaltevuus 2 kulkee (-1, -2). auta, tämä hämmentävä?
Y-4 = -4 (x-5) "ja" y + 2 = 2 (x + 1)> "" värin (sininen) "piste-kaltevuusmuodon rivin yhtälö on. • väri (valkoinen) (x) y-y_1 = m (x-x_1) "jossa m on rinne ja" (x_1, y_1) "rivin" (A) "piste, jossa on" m = -4 "ja "(x_1, y_1) = (5,4)" korvaa nämä arvot yhtälöön antaa "y-4 = -4 (x-5) larrcolor (sininen)" piste-kaltevuusmuodossa "(B)", joka on annettu "m = 2 "ja" (x_1, y_1) = (- 1, -2) y - (- 2)) = 2 (x - (- 1)) rArry + 2 = 2 (x + 1) larrcolor (sininen) " piste-kaltevuus