Vastaus:
Jos voimme valita saman opiskelijan kahdesti,
Jos emme voi valita samaa opiskelijaa kahdesti,
Selitys:
On
Todennäköisyys, että hame on pukeutunut satunnaisesti, on:
Jos meillä on mahdollisuus valita satunnaisesti sama opiskelija kahdesti, todennäköisyys on:
Jos emme saa valita samaa opiskelijaa kahdesti, toisen poiminnan tulee olla yksi vähemmän opiskelija, jolla on hame, joten todennäköisyys on:
Sateen todennäköisyys huomenna on 0,7. Sateen todennäköisyys seuraavana päivänä on 0,55 ja sateen todennäköisyys seuraavana päivänä on 0,4. Miten määrität P: n ("se sataa kaksi tai useampia päiviä kolmen päivän aikana")?
577/1000 tai 0,577 Koska todennäköisyydet lisäävät enintään 1: Ensimmäisen päivän todennäköisyys sataa = 1-0.7 = 0.3 Toisen päivän todennäköisyys sataa = 1-0,55 = 0,45 Kolmannen päivän todennäköisyys sataa = 1-0.4 = 0.6 Nämä ovat eri sateen mahdollisuudet 2 päivää: R tarkoittaa sadetta, NR ei sadetta. väri (sininen) (P (R, R, NR)) + väri (punainen) (P (R, NR, R)) + väri (vihreä) (P (NR, R, R)) Tämän tekeminen: väri (sininen ) (P (R, R, NR) = 0.7xx0.55xx0.6 = 231/100
Todennäköisyys, että olet myöhässä kouluun, on 0,05 joka päivä. Koska olet nukkunut myöhään, todennäköisyys, että olet myöhässä koulussa, on 0,13. Ovatko tapahtumat myöhässä kouluun ja nukkuminen myöhässä?
Ne ovat riippuvaisia. Tapahtuma "nukkui myöhään" vaikuttaa toisen tapahtuman "myöhään kouluun" todennäköisyyteen. Yksi esimerkki itsenäisistä tapahtumista on kolikon toistaminen toistuvasti. Koska kolikolla ei ole muistia, toisten (tai myöhempien) tossien todennäköisyydet ovat edelleen 50/50 - edellyttäen, että se on oikeudenmukainen kolikko! Extra: Saatat haluta ajatella tätä yhden: Tapaat ystäväsi, jota et ole puhunut jo vuosia. Tiedät vain, että hänellä on kaksi lasta. Kun tapaat hä
80%: ssa tapauksista työntekijä käyttää bussia menemään töihin.Jos hän ottaa bussin, on todennäköisyys, että saavutetaan ajoissa 3/4. Keskimäärin 4 päivää 6: sta saapuu ajoissa töihin. työntekijä ei saapunut ajoissa töihin. Mikä on todennäköisyys, että hän otti bussin?
0,6 P ["hän ottaa väylän"] = 0,8 P ["hän on ajoissa | ottaa väylän"] = 0,75 P ["hän on ajoissa"] = 4/6 = 2/3 P ["hän ottaa väylän | hän ei ole ajoissa "] =? P ["hän ottaa väylän | hän ei ole ajoissa"] * P ["hän ei ole ajoissa"] = P ["hän ottaa väylän JA EI ole ajoissa"] = P ["hän ei ole ajoissa | hän ottaa väylän "] * P [" hän ottaa väylän "] = (1-0,75) * 0,8 = 0,25 * 0,8 = 0,2 => P [" hän otta