Vastaus:
Toimikausi on
Selitys:
Jos haluat löytää funktion jakson (tai taajuuden, joka on vain jakso), on ensin löydettävä, onko toiminto jaksollinen. Tätä varten kahden toisiinsa liittyvän taajuuden suhdeluvun tulisi olla järkevä määrä ja sellaisena kuin se on
Aika
Näin ollen toimikausi on
(Tämän vuoksi LCM on otettava kahdesta fraktiosta
Näytä, että cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Olen hieman sekava, jos teen Cos²4π / 10 = cos² (π-6π / 10) & cos²9π / 10 = cos² (π-π / 10), se muuttuu negatiiviseksi kuin cos (180 ° -theta) = - costheta in toinen neljännes. Miten voin todistaa kysymyksen?
Katso alla. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Miten ensimmäistä johdannaistestiä käytetään paikallisen ääriarvon y = sin x cos x määrittämiseen?
Y = sin (x) cos (x): n ääriarvo on x = pi / 4 + npi / 2, jossa on suhteellinen kokonaisluku Be f (x) funktio, joka edustaa y: n vaihtelua repsectillä x: ään. Ole f '(x) f (x): n johdannainen. f '(a) on f (x) -käyrän kaltevuus x = pisteessä. Kun kaltevuus on positiivinen, käyrä kasvaa. Kun kaltevuus on negatiivinen, käyrä laskee. Kun kaltevuus on nolla, käyrä pysyy samana. Kun käyrä saavuttaa ekstremumin, se lakkaa kasvamasta / laskemasta ja alkaa laskea / kasvaa. Toisin sanoen kaltevuus siirtyy positiivisesta negatiiviseen tai negatiivi
Näytä, että (1 + cos theta + i * sin theta) ^ n + (1 + cos theta-i * sin theta) ^ n = 2 ^ (n + 1) * (cos theta / 2) ^ n * cos ( n * theta / 2)?
Katso alla. Olkoon 1 + costeta + isintheta = r (cosalpha + isinalpha), tässä r = sqrt ((1 + costheta) ^ 2 + sin ^ 2theta) = sqrt (2 + 2costheta) = sqrt (2 + 4cos ^ 2 (theta / 2 ) -2) = 2cos (theta / 2) ja tanalpha = sintheta / (1 + costeta) == (2sin (teta / 2) cos (teta / 2)) / (2cos ^ 2 (theta / 2)) = tan (theta / 2) tai alfa = theta / 2, sitten 1 + costeta-isintheta = r (cos (alfa) + isiini (-alfa)) = r (cosalpha-isinalpha) ja voimme kirjoittaa (1 + costeta + isintheta) ^ n + (1 + costeta-isintheta) ^ n käyttäen DE MOivren teoriaa r ^ n (cosnalpha + isinnalpha + cosnalpha-isinnalpha) = 2r ^ ncosnalpha