Vastaus:
Selitys:
B.E.D.M.A.S.:n mukaan aloita suluilla. Jos nimittäjät eivät ole suluissa, etsi L.C.M. (alin yhteinen moninkertainen) kahden nimittäjän välillä ja kirjoittaa fraktiot uudelleen.
# (1-5 / 12) -:(5/6 + 1/3) = x -:(9 / 8-5 / 8) #
# (12 / 12-5 / 12) -:(5/6 + 2/6) = x -:(9 / 8-5 / 8) #
Yksinkertaista suluissa.
# 7 / 12-: 7/6 = x-: 4/8 #
# 7/12 * 6/7 = x-: 4/8 #
#COLOR (punainen) cancelcolor (musta) 7 / (väri (turkoosi) 12color (sininen) (-: 6)) * (väri (turkoosi) 6color (sininen) (-: 6)) / väri (punainen) cancelcolor (musta) 7 = x-: 4/8 #
# 1/2 = x-: 4/8 #
# X = 1/2 * 4/8 #
# X = 1 / (väri (violetti) 2color (oranssi) (-: 2)) * (väri (violetti) 4color (oranssi) (-: 2)) / 8 #
# X = 1/1 * 2/8 #
# X = 2/8 #
# X = (2color (punainen) (-: 2)) / (8color (punainen) (-: 2)) #
#COLOR (vihreä) (| bar (il (väri (valkoinen) (a / a) väri (musta) (x = 1/4) väri (valkoinen) (a / a) |))) #
Ratkaise yhtälö?
X = (npi) / 5, (2n + 1) pi / 2 missä nrarrZ Tässä, cosx * cos2x * sin3x = (sin2x) / 4 rrr2 * sin3x [2cos2x * cosx] = sin2x rarr2 * sin3x [cos (2x + x ) + cos (2x-x)] = sin2x rarr2sin3x [cos3x + cosx] = sin2x rarr2sin3x * cos3x + 2sin3x * cosx = sin2x rarrsin6x + sin (3x + x) + sin (3x-x) = sin2x rarrsin6x + sin4x = sin2x -sin2x = 0 rarrsin6x + sin4x = 0 rarr2sin ((6x + 4x) / 2) * cos ((6x-4x) / 2) = 0 rarrsin5x * cosx = 0 Joko sin5x = 0 rarr5x = npi rarrx = (npi) / 5 Tai, cosx = 0 x = (2n + 1) pi / 2 Näin ollen x = (npi) / 5, (2n + 1) pi / 2 missä nrarrZ
Ratkaise yhtälö auttakaa?
X = (npi) / 5, (2n + 1) pi / 2 missä nrarrZ Tässä, cosx * cos2x * sin3x = (sin2x) / 4 rrr2 * sin3x [2cos2x * cosx] = sin2x rarr2 * sin3x [cos (2x + x ) + cos (2x-x)] = sin2x rarr2sin3x [cos3x + cosx] = sin2x rarr2sin3x * cos3x + 2sin3x * cosx = sin2x rarrsin6x + sin (3x + x) + sin (3x-x) = sin2x rarrsin6x + sin4x = sin2x -sin2x = 0 rarrsin6x + sin4x = 0 rarr2sin ((6x + 4x) / 2) * cos ((6x-4x) / 2) = 0 rarrsin5x * cosx = 0 Joko sin5x = 0 rarr5x = npi rarrx = (npi) / 5 Tai, cosx = 0 x = (2n + 1) pi / 2 Näin ollen x = (npi) / 5, (2n + 1) pi / 2 missä nrarrZ
(t - 9) ^ (1/2) - t ^ (1/2) = 3? ratkaise mahdolliset radikaaliyhtälöt.
Ratkaisua ei ole annettu: (t-9) ^ (1/2) - t ^ (1/2) = 3 "tai" sqrt (t-9) - sqrt (t) = 3 Lisää sqrt (t) molemmille puolille yhtälöstä: sqrt (t-9) - sqrt (t) + sqrt (t) = 3 + sqrt (t) Yksinkertaistaminen: sqrt (t-9) = 3 + sqrt (t) Kohdista yhtälön molemmat puolet: ( sqrt (t-9)) ^ 2 = (3 + sqrt (t)) ^ 2 t - 9 = (3 + sqrt (t)) (3 + sqrt (t)) Jaa yhtälön oikea puoli: t - 9 = 9 + 3 sqrt (t) + 3 sqrt (t) + sqrt (t) sqrt (t) Yksinkertaista lisäämällä samoja termejä ja käyttämällä sqrt (m) sqrt (m) = sqrt (m * m) = sqrt (m ^ 2) = m: