Parabolan yhtälö: y = ax ^ 2 + bx + c. Etsi a, b ja c.
x symmetria-akselista:
Kirjoittamalla, että kaavio kulkee kohdassa (1, 0) ja kohdassa (4, -3):
(1) 0 = a + b + c -> c = - a - b = - a + 6a = 5a
(2) -3 = 16a + 4b + c -> -3 = 16a - 24a + 5a = -3a -> a = 1
b = -6a = -6; ja c = 5a = 5
Tarkista x = 1: -> y = 1 - 6 + 5 = 0. OK
Olkoon l linja, jota kuvataan yhtälöllä ax + + c = 0 ja anna P (x, y) olla piste, joka ei ole l: llä. Ilmoittakaa etäisyys, d välillä l: n ja P: n välillä yhtälön yhtälön a, b ja c suhteen?
Katso alempaa. http://socratic.org/questions/let-l-be-a-line-described-by-equation-ax-by-c-0-and-let-pxy-be-a-point-not-on- -1 # 336210
Olkoon l linja, jota kuvataan yhtälöllä ax + + c = 0 ja anna P (x, y) olla piste, joka ei ole l: llä. Ilmoittakaa etäisyys, d välillä l: n ja P: n välillä yhtälön yhtälön a, b ja c suhteen?
D = (c + a x_0 + b y_0) / sqrt (a ^ 2 + b ^ 2) Olkoon l-> a x + by + c = 0 ja p_0 = (x_0, y_0) pistettä, joka ei ole l: llä. Oletetaan, että b ne 0 ja kutsuvat d ^ 2 = (x-x_0) ^ 2 + (y-y_0) ^ 2 sen jälkeen kun y = - (a x + c) / b on d ^ 2: n korvaaminen, meillä on d ^ 2 = ( x - x_0) ^ 2 + ((c + ax) / b + y_0) ^ 2. Seuraava vaihe on löytää d ^ 2-vähimmäismäärä x: n suhteen, joten löydämme x: n, että d / (dx) (d ^ 2) = 2 (x - x_0) - (2 a ((c + ax) / b + y_0 )) / b = 0. Tämä tapahtuu x = (b ^ 2 x_0 - ab y_0-ac) / (a ^ 2 + b ^ 2) nyt,
Kysymys 2: Linja FG sisältää pisteitä F (3, 7) ja G ( 4, 5). Linja HI sisältää pisteet H ( 1, 0) ja I (4, 6). Linjat FG ja HI ovat ...? samansuuntaisesti kohtisuorassa
"ei"> "käyttäen seuraavia viivojen rinteisiin nähden" • "rinnakkaisilla viivoilla on yhtäläiset rinteet" • "kohtisuorien viivojen tuote" = -1 "laskee rinteet m käyttämällä" värin (sininen) "kaltevuuskaavaa" • väri (valkoinen) (x) m = (y_2-y_1) / (x_2-x_1) "anna" (x_1, y_1) = F (3,7) "ja" (x_2, y_2) = G (-4, - 5) m_ (FG) = (- 5-7) / (- 4-3) = (- 12) / (- 7) = 12/7 "anna" (x_1, y_1) = H (-1,0) "ja" (x_2, y_2) = I (4,6) m_ (HI) = (6-0) / (4 - (- 1)) = 6/5 m_ (FG)! = m_ (