Mikä on y = -3x ^ 2-x-2 (3x + 5) ^ 2 kärki?

Mikä on y = -3x ^ 2-x-2 (3x + 5) ^ 2 kärki?
Anonim

Vastaus:

Piste on #(- 61/42, - 10059/1764)# tai #(-1.45,-5.70)#

Selitys:

Voit löytää huippupisteen KAIKKIEN parabolan kolmesta muodosta: Standard, faktored ja vertex. Koska se on yksinkertaisempaa, muutan sen vakiomuodoksi.

# y = -3x ^ 2-x-2 (3x + 5) ^ 2 #

# y = -3x ^ 2-x-2 * (9x ^ 2 + 2 * 5 * 3 * x + 25) #

# y = -3x ^ 2-x-18x ^ 2-60x-50 #

# y = -21x ^ 2-61x-50 #

# x_ {vertex} = {-b} / {2a} = 61 / {2 * (- 21)} = - 61/42 ~ = -1.45 #

(voit todistaa tämän joko täyttämällä neliön yleensä tai laskemalla keskiarvon neliöyhtälöstä löytyvistä juurista)

ja sitten korvasi sen takaisin lausekkeeseen löytääksesi #y_ {kärki} #

#y_ {vertex} = -21 * (- 61/42) ^ 2-61 * (- 61/42) -50 #

#y_ {vertex} = {- 21 * 61 * 61} / {42 * 42} + {61 * 61 * 42} / {42 * 42} - {50 * 42 * 42} / {42 * 42} #

#y_ {vertex} = {-21 * 61 * 61 + 61 * 61 * 42 - 50 * 42 * 42} / {42 * 42} #

#y_ {kärki} = - 10059/1764 ~ = -5,70 #

Piste on #(- 61/42, - 10059/1764)# tai #(-1.45,-5.70)#