Miten erottaa sqrt (cos (x ^ 2 + 2)) + sqrt (cos ^ 2x + 2)?

Miten erottaa sqrt (cos (x ^ 2 + 2)) + sqrt (cos ^ 2x + 2)?
Anonim

Vastaus:

(dy) / (dx) = (xsen (x ^ 2 + 2) + sen (x + 2)) / (sqrtcos (x ^ 2 + 2) + sqrt (cos ^ 2 (x + 2))) dydx=xsen(x2+2)+sen(x+2)cos(x2+2)+cos2(x+2)

Selitys:

(dy) / (dx) = 1 / (2sqrtcos (x ^ 2 + 2) + sqrt (cos ^ 2 (x + 2))) * sen (x ^ 2 + 2) * 2x + 2sen (x + 2) dydx=12cos(x2+2)+cos2(x+2)sen(x2+2)2x+2sen(x+2)

(dy) / (dx) = (2xsen (x ^ 2 + 2) + 2sen (x + 2)) / (2sqrtcos (x ^ 2 + 2) + sqrt (cos ^ 2 (x + 2))) dydx=2xsen(x2+2)+2sen(x+2)2cos(x2+2)+cos2(x+2)

(dy) / (dx) = (peruuta2 (xsen (x ^ 2 + 2) + sen (x + 2))) / (cancel2sqrtcos (x ^ 2 + 2) + sqrt (cos ^ 2 (x + 2)))

(dy) / (dx) = (xsen (x ^ 2 + 2) + sen (x + 2)) / (sqrtcos (x ^ 2 + 2) + sqrt (cos ^ 2 (x + 2)))