Mikä on alun perin 0,64 M liuoksen, jossa oli monoprotiinihappo-bentsoehappoa (HA), tasapaino pH: ssa 25 ^ C (Ka = 6,3 x 10 ^ -5)?

Mikä on alun perin 0,64 M liuoksen, jossa oli monoprotiinihappo-bentsoehappoa (HA), tasapaino pH: ssa 25 ^ C (Ka = 6,3 x 10 ^ -5)?
Anonim

Vastaus:

Katso alempaa:

Selitys:

Aloita määrittämällä ICE-taulukko:

Meillä on seuraava reaktio:

#HA (aq) + H202 (aq) rightleftharpoons A ^ (-) (aq) + H3O ^ (+) (aq) #

Ja meillä on alkupitoisuus # HA # 0,64 # Moldm ^ -3 #, joten liitä se, mitä meillä on, ICE-taulukkoon:

#color (valkoinen) (mmmmmi) HA (aq) + H2O (l) rightleftharpoons A ^ (-) (aq) + H3O ^ (+) (aq) #

# "Initial" väri (valkoinen) (mm) 0.64color (valkoinen) (miimm) väri (valkoinen) (mmmmm) 0color (valkoinen) (mmmmmm) 0 #

# "Change" väri (valkoinen) (im) -xcolor (valkoinen) (miimm) väri (valkoinen) (mmmm) + xcolor (valkoinen) (mmmmii) + x #

# "Eq:" väri (valkoinen) (kkk) 0,64-xcolor (valkoinen) (iimm) väri (valkoinen) (mmmmm) xcolor (valkoinen) (mmmmmm) x #

Nyt käytät # K_a # ilmaisu:

#K_a = (H_3O ^ (+) kertaa A ^ (-)) / HA #

Jääpöydältä ja annetuista arvoista voimme liittää kaikki tasapainoarvot # K_a # ilmaisu kuten # K_a # on vakio.

# (6,3 kertaa10 ^ -5) = (x ^ 2) / (0.64-x) #

Hapon konsentraation muutosta voidaan kuitenkin pitää vähäpätöisenä # K_a # pieni: # (0,64 x = 0,64) #

Yllä oleva yhtälö voidaan myös ratkaista asettamalla neliöyhtälö, mutta säästät aikaa olettaen, että keskittymän muutos on vähäinen - ja se pyöristyy samaan vastaukseen.

# (6,3 kertaa10 ^ -5) = (x ^ 2) / (0.64) #

Siten:

# X = +0,0063498031 #

Siinä yhtälö tulee:

# H_3O ^ (+) = x = +0,0063498031 #

# PH = -log H_3O ^ (+) #

# PH = -log +0,0063498031 #

#pH noin 2,2 #