Vastaus:
Alla oleva todistus
käyttäen konjugaatteja ja Pythagorean lauseen trigonometristä versiota.
Selitys:
Osa 1
Osa 2
samalla lailla
Osa 3: Termien yhdistäminen
Kuinka todistaa (1 + sinx-cosx) / (1 + cosx + sinx) = tan (x / 2)?
Katso alla. LHS = (1-cosx + sinx) / (1 + cosx + sinx) = (2sin ^ 2 (x / 2) + 2sin (x / 2) * cos (x / 2)) / (2kg ^ 2 (x / 2) + 2sin (x / 2) * cos (x / 2) = (2sin (x / 2) [sin (x / 2) + cos (x / 2)]) / (2cos (x / 2) * [ sin (x / 2) + cos (x / 2)]) = tan (x / 2) = RHS
Numerot x, y z täyttävät abs (x + 2) + abs (y + 3) + abs (z-5) = 1 sitten todistaa, että abs (x + y + z) <= 1?
Katso selitys. Muista, että | | a + b) le | a | + | b | ............ (tähti). :. | x + y + z | = | (x + 2) + (y + 3) + (z-5) |, le | (x + 2) | + | (y + 3) | + | (z-5 ) | .... [koska (tähti)], = 1 ........... [koska "Annettu]". ts., | (x + y + z) | le 1.
Voiko joku auttaa vahvistamaan tämän trigetin identiteetin? (Sinx + cosx) ^ 2 / sin ^ 2x-cos ^ 2x = sin ^ 2x-cos ^ 2x / (sinx-cosx) ^ 2
Se tarkistetaan alla: (sinx + cosx) ^ 2 / (sin ^ 2x-cos ^ 2x) = (sin ^ 2x-cos ^ 2x) / (sinx-cosx) ^ 2 => (peruuta ((sinx + cosx)) ) (sinx + cosx)) / (peruuta ((sinx + cosx)) (sinx-cosx)) = (sin ^ 2x-cos ^ 2x) / (sinx-cosx) ^ 2 => ((sinx + cosx) ( sinx-cosx)) / ((sinx-cosx) (sinx-cosx)) = (sin ^ 2x-cos ^ 2x) / (sinx-cosx) ^ 2 => väri (vihreä) ((sin ^ 2x-cos ^ 2x) / (sinx-cosx) ^ 2) = (sin ^ 2x-cos ^ 2x) / (sinx-cosx) ^ 2