Miten ratkaista sin (2x) cos (x) = sin (x)?

Miten ratkaista sin (2x) cos (x) = sin (x)?
Anonim

Vastaus:

# x = npi, 2npi + - (pi / 4) ja 2npi + - ((3pi) / 4) # missä #n ZZ: ssä

Selitys:

# Rarrsin2xcosx = sinx #

# Rarr2sinx * cos ^ 2x-sinx = 0 #

#rarrsinx (2cos ^ 2x-1) = 0 #

# Rarrrarrsinx * (sqrt2cosx + 1) * (sqrt2cosx-1) = 0 #

Kun # Sinx = 0 #

# Rarrx = NPI #

Kun # Sqrt2cosx + 1 = 0 #

# Rarrcosx = -1 / sqrt2 = cos ((3pi) / 4) #

# Rarrx = 2npi + - ((3pi) / 4) #

Kun # Sqrt2cosx-1 = 0 #

# Rarrcosx = 1 / sqrt2 = cos (pi / 4) #

# Rarrx = 2npi + - (pi / 4) #

Vastaus:

#x = npi, pi / 4 + npi, (3pi) / 4 + npi # missä #n ZZ: ssä

Selitys:

Meillä on, #color (valkoinen) (xxx) sin2xcosx = sinx #

#rArr 2sinxcosx xx cosx = sinx # Kuten, #sin 2x = 2sinxcosx #

#rArr 2sinxcos ^ 2x - sin x = 0 #

#rArr sinx (2cos ^ 2 - 1) = 0 #

Nyt, Jompikumpi, #sin x = 0 rArr x = sin ^ -1 (0) = npi #, missä #n ZZ: ssä

Tai, #color (valkoinen) (xxx) 2cos ^ 2x - 1 = 0 #

#rArr 2cos ^ 2x - (sin ^ 2x + cos ^ 2x) = 0 # Kuten # sin ^ 2x + cos ^ 2 x = 1 #

#rArr 2cos ^ 2x-sin ^ 2x-cos ^ 2x = 0 #

#rArr cos ^ 2x - sin ^ 2x = 0 #

#rArr (cosx + sin x) (cos x - sin x) = 0 #

Joten, joko #cos x - sin x = 0 rArr cos x = sin x rArr x = pi / 4 + - npi #, missä #n ZZ: ssä

Tai, #cos x + sin x = 0 rArr cos x = -sinx rArr x = (3pi) / 4 + - npi #, missä #n ZZ: ssä

Yhteenveto siitä, #x = npi, pi / 4 + - npi, (3pi) / 4 + - npi #, missä #n ZZ: ssä