Vastaus:
Selitys:
#f (x) = tan (x) #
on pystysuora asymptootti mihin tahansa
Toiminnon arvo on määrittelemätön jokaisesta näistä arvoista
Näiden asymptoottien lisäksi
#RR "{x: x = pi / 2 + npi, n ZZ: ssä} #
kaavio {tan x -10, 10, -5, 5}
Mitkä ovat f (x) = 1 / cosx: n asymptootti (t) ja reikä (t), jos sellaisia on?
X = pi / 2 + nastalla, n ja kokonaisluvulla on pystysuora asymptootti. Asymptootteja tulee olemaan. Aina kun nimittäjä on 0, tapahtuu pystysuora asymptootti. Määritä nimittäjä arvoon 0 ja ratkaise. cosx = 0 x = pi / 2, (3pi) / 2 Koska funktio y = 1 / cosx on jaksollinen, on äärettömät pystysuorat asymptootit, jotka kaikki seuraavat kuviota x = pi / 2 + pin, n kokonaisluku. Lopuksi huomaa, että funktio y = 1 / cosx vastaa y = secx. Toivottavasti tämä auttaa!
Mitkä ovat f (x) = 1 / (2-x): n asymptootti (t) ja reikä (t), jos sellaisia on?
Tämän toiminnon asymptootit ovat x = 2 ja y = 0. 1 / (2-x) on järkevä toiminto. Tämä tarkoittaa, että funktion muoto on näin: kaavio {1 / x [-10, 10, -5, 5]} Nyt funktio 1 / (2-x) noudattaa samaa kaaviorakennetta, mutta muutama tweaks . Kaavio siirtyy ensin vaakasuoraan oikealle 2: lla. Tätä seuraa heijastus x-akselin yli, jolloin tuloksena on kaavio: grafiikka {1 / (2-x) [-10, 10, -5, 5 ]} Kun tämä graafi on mielessäsi, etsimään asymptootit, kaikki mitä tarvitsee etsii rivejä, joihin kaavio ei kosketa. Ja ne ovat x = 2 ja y = 0.
Mitkä ovat f (x) = 1 / cotx: n asymptootti (t) ja reikä (t), jos sellaisia on?
Tämä voidaan kirjoittaa uudelleen f (x) = tanx, joka vuorostaan voidaan kirjoittaa f (x) = sinx / cosx Tämä määritetään, kun cosx = 0, eli x = pi / 2 + pin. Toivottavasti tämä auttaa!