Vastaus:
Selitys:
Ensinnäkin alamme binomialla:
varten
Joten meillä on
Me haluamme
Z-taulukon avulla löydämme sen
Seuraavat tiedot osoittavat, että 20 työntekijän näytteessä on viime yön aikana saavutettu uniaika 6,5,10,5,6,9,9,5,9,5,8,7,8,6, 9,8,9,6,10,8. Mikä on tarkoitus? Mikä on varianssi? Mikä on keskihajonta?
Keskiarvo = 7,4 Standardipoikkeama ~~ 1.715 Varianssi = 2.94 Keskiarvo on kaikkien datapisteiden summa jaettuna datapisteiden lukumäärällä. Tässä tapauksessa meillä on (5 + 5 + 5 + 5 + 6 + 6 + 6 + 6 + 7 + 8 + 8 + 8 + 8 + 9 + 9 + 9 + 9 + 9 + 10 + 10) / 20 = 148/20 = 7.4 Varianssi on "keskiarvon keskiarvo keskiarvosta". http://www.mathsisfun.com/data/standard-deviation.html Tämä tarkoittaa sitä, että vähennät jokaisen tietopisteen keskiarvosta, neliöidät vastaukset ja lisää ne sitten yhteen ja jaat ne datapisteiden lukumää
Sateen todennäköisyys huomenna on 0,7. Sateen todennäköisyys seuraavana päivänä on 0,55 ja sateen todennäköisyys seuraavana päivänä on 0,4. Miten määrität P: n ("se sataa kaksi tai useampia päiviä kolmen päivän aikana")?
577/1000 tai 0,577 Koska todennäköisyydet lisäävät enintään 1: Ensimmäisen päivän todennäköisyys sataa = 1-0.7 = 0.3 Toisen päivän todennäköisyys sataa = 1-0,55 = 0,45 Kolmannen päivän todennäköisyys sataa = 1-0.4 = 0.6 Nämä ovat eri sateen mahdollisuudet 2 päivää: R tarkoittaa sadetta, NR ei sadetta. väri (sininen) (P (R, R, NR)) + väri (punainen) (P (R, NR, R)) + väri (vihreä) (P (NR, R, R)) Tämän tekeminen: väri (sininen ) (P (R, R, NR) = 0.7xx0.55xx0.6 = 231/100
Olet tutkinut, kuinka monta ihmistä odottaa rivillä pankkisi perjantaina iltapäivällä klo 15.00, ja olet luonut todennäköisyysjakauman 0, 1, 2, 3 tai 4 henkilölle linjassa. Todennäköisyydet ovat 0,1, 0,3, 0,4, 0,1 ja 0,1. Mikä on todennäköisyys, että vähintään 3 henkilöä on linjassa perjantaina iltapäivällä klo 15.00?
Tämä on JOKA ... TAI tilanne. Voit lisätä todennäköisyyksiä. Edellytykset ovat yksinomaan: et voi olla 3–4 henkilöä rivillä. On 3 henkilöä tai 4 henkilöä linjassa. Lisää näin: P (3 tai 4) = P (3) + P (4) = 0,1 + 0,1 = 0,2 Tarkista vastaus (jos sinulla on jäljellä aikaa testin aikana) laskemalla vastakkainen todennäköisyys: P (<3) = P (0) + P (1) + P (2) = 0,1 + 0,3 + 0,4 = 0,8 Ja tämä ja vastaus lisää jopa 1,0, kuten pitäisi.