Oletan, että tarkoitat
(Joskus
Meidän on käytettävä seuraavia identiteettejä:
Näiden mielessä voimme löytää
Näytä, että cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Olen hieman sekava, jos teen Cos²4π / 10 = cos² (π-6π / 10) & cos²9π / 10 = cos² (π-π / 10), se muuttuu negatiiviseksi kuin cos (180 ° -theta) = - costheta in toinen neljännes. Miten voin todistaa kysymyksen?
Katso alla. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Miten lasket syn (cos ^ -1 (5/13) + tan ^ -1 (3/4))?
Sin (cos ^ (- 1) (5/13) + tan ^ (- 1) (3/4)) = 63/65 Anna cos ^ (- 1) (5/13) = x sitten rarrcosx = 5/13 rarrsinx = sqrt (1-cos ^ 2x) = sqrt (1- (5/13) ^ 2) = 12/13 rarrx = sin ^ (- 1) (12/13) = cos ^ (- 1) (5 / 13) Anna myös tan ^ (- 1) (3/4) = y sitten rarrtany = 3/4 rarrsiny = 1 / cscy = 1 / sqrt (1 + cot ^ 2y) = 1 / sqrt (1+ (4 / 3) ^ 2) = 3/5 harvinaista = tan ^ (- 1) (3/4) = sin ^ (- 1) (3/5) rarrcos ^ (- 1) (5/13) + tan ^ (- 1) (3/4) = sin ^ (- 1) (12/13) + sin ^ (- 1) (3/5) = sin ^ (- 1) (12/13 * sqrt (1- (3 / 5) ^ 2) + 3/5 * sqrt (1- (12/13) ^ 2)) = sin ^ (- 1) (12/13 * 4/5 + 3/5 * 5/13) = 63 / 65 Nyt sin (cos
Miten lasket cos (tan ^ -1 (3/4))?
Cos (tan ^ -1 (3/4)) = 0,8 cos (tan ^ -1 (3/4)) =? Anna tan ^ -1 (3/4) = theta:. tan theta = 3/4 = P / B, P ja B ovat kohtisuorassa ja oikeassa kolmiossa, sitten H ^ 2 = P ^ 2 + B ^ 2 = 3 ^ 2 + 4 ^ 2 = 25: .H = 5; :. cos theta = B / H = 4/5 = 0,8 cos (tan ^ -1 (3/4)) = cos theta = 0,8:. cos (tan ^ -1 (3/4)) = 0,8 [Ans]