Vastaus:
Selitys:
Käytämme integrointia osittain, mikä todistaa
Käytä integrointia osien avulla
Käytä osien uudelleen integrointia toiseen integraaliin
Nyt muistakaa me määrittelimme
Vastaus:
Katso alempaa.
Selitys:
Käyttämällä de Moivren identiteettiä
mutta
ja lopuksi
Miten voin käyttää kvadratiivista kaavaa ratkaista x ^ 2 + 7x = 3?
Jos haluat tehdä kvadraattisen kaavan, sinun tarvitsee vain tietää, mihin liittää. Kuitenkin ennen kuin saavamme kvadraattisen kaavan, meidän on tiedettävä yhtälön itse. Näet, miksi tämä on tärkeä hetki. Joten tässä on standardoitu yhtälö, joka on neliöllinen, jonka voit ratkaista neliökaavalla: ax ^ 2 + bx + c = 0 Nyt kun huomaat, meillä on yhtälö x ^ 2 + 7x = 3, toisella puolella 3. yhtälö. Niinpä, jotta se saataisiin vakiolomakkeeseen, vähennämme 3 molemmilta puolilta saadakses
Lim 3x / tan3x x 0 Miten ratkaista se? Mielestäni vastaus on 1 tai -1, joka voi ratkaista sen?
Raja on 1. Lim_ (x -> 0) (3x) / (tan3x) = Lim_ (x -> 0) (3x) / ((sin3x) / (cos3x)) = Lim_ (x -> 0) (3xcos3x ) / (sin3x) = Lim_ (x -> 0) (3x) / (sin3x) .cos3x = Lim_ (x -> 0) väri (punainen) ((3x) / (sin3x)) cos3x = Lim_ (x - > 0) cos3x = Lim_ (x -> 0) cos (3 * 0) = Cos (0) = 1 Muista, että: Lim_ (x -> 0) väri (punainen) ((3x) / (sin3x)) = 1 ja Lim_ (x -> 0) väri (punainen) ((sin3x) / (3x)) = 1
Miten lasketaan integraalin inte ^ (4t²-t) dt arvo [3, x]?
Inte ^ (4t ^ 2-t) dt = (e ^ (4x ^ 2-x)) / (8x-1) -e ^ (33) / 23 Ole f (x) = e ^ (4t ^ 2-t ) toiminto. Tämän toiminnon integroimiseksi tarvitset sen primitiivin F (x) F (x) = (e ^ (4t ^ 2-t)) / (8t-1) + k, jossa k on vakio. E ^: n (4t ^ 2-t) integraatio [3; x]: lle lasketaan seuraavasti: inte ^ (4t ^ 2-t) dt = F (x) -F (3) = (e ^ (4x ^ 2-x)) / (8x-1) + k - ((e ^ (4cdot3 ^ 2-3)) / (8cdot3-1) + k) = (e ^ (4x ^ 2-x)) / (8x -1) -e ^ (33) / 23