Vastaus:
Selitys:
Anna annettujen pisteiden välinen etäisyys olla s.
sitten
täten s = 2
S: n kohtisuorassa bisektorissa leikataan s
Olkoon annettu kolmion korkeus h yksikköä.
Kolmion alue =
siten
joten h =
Olkoon t kyseisen kolmion yhtäläisten sivujen pituudet.
Sitten Pythagoraksen lause,
=
=
siten t =
Kaksi suorakulmaisen kolmion kulmaa ovat kohdassa (7, 2) ja (3, 6). Jos kolmion alue on 6, mitkä ovat kolmion sivujen pituudet?
Sivujen pituudet ovat: a = 5 / 2sqrt2 = 3.5355339 ja b = 5 / 2sqrt2 = 3.5355339 ja c = 4sqrt2 = 5.6568542 Ensin annamme C (x, y) olla kolmion tuntematon kolmas kulma. Anna myös kulmat A (7, 2) ja B (3, 6) asettaa yhtälön sivuilla etäisyyden kaavalla a = b sqrt ((x_c-3) ^ 2 + (y_c-6) ^ 2) = sqrt (( x_c-7) ^ 2 + (y_c-2) ^ 2) yksinkertaistaa saada x_c-y_c = 1 "" "ensimmäinen yhtälö Käytä nyt matriisikaavaa Area: Area = 1/2 ((x_a, x_b, x_c, x_a ), (y_a, y_b, y_c, y_a)) = = 1/2 (x_ay_b + x_by_c + x_cy_a-x_by_a-x_cy_b-x_ay_c) Alue = 1/2 ((7,3, x_c, 7), (2,6 , y_c, 2)) =
Kaksi suorakulmaisen kolmion kulmaa ovat kohdassa (7, 2) ja (3, 6). Jos kolmion alue on 24, mitkä ovat kolmion sivujen pituudet?
Pl tutustu linkkiin http://socratic.org/questions/two-corners-of-an-isosceles-triangle-are-at-9-4-and-3-2-if-the-triangle-s-area- i # 223971
Kaksi suorakulmaisen kolmion kulmaa ovat kohdassa (7, 2) ja (4, 9). Jos kolmion alue on 24, mitkä ovat kolmion sivujen pituudet?
Kolmion kolmipuolen pituus on 7,62, 7,36, 7,36 yksikköä isokellien kolmio on B = sqrt ((x_1-x_2) ^ 2 + (y_1-y_2) ^ 2)) = sqrt ((7-4) ^ 2+ (2-9) ^ 2)) = sqrt (9 + 49) = sqrt58 ~~ 7.62 (2dp) yksikkö Tiedämme, että kolmion alue on A_t = 1/2 * B * H missä H on korkeus. :. 24 = 1/2 * 7,62 * H tai H ~ ~ 48 / 7,62 ~ ~ 6,30 (2dp) yksikkö Jalkat ovat L = sqrt (H ^ 2 + (B / 2) ^ 2) = sqrt (6.30 ^ 2 + (7.62 / 2) ^ 2) ~ ~ 7.36 (2dp) yksikkö Kolmion kolmipuolen pituus on 7.62, 7.36, 7.36 yksikkö [Ans]