Vastaus:
Selitys:
# y-3 = 5 (x-4) "on" väri (sininen) "piste-kaltevuuslomake" #
# "joka on" y-y_1 = m (x-x_1) #
# "jossa m edustaa kaltevuutta" #
#rArr "rinne" = m = 5 #
# "kohtisuoran viivan kaltevuus on" #
#color (sininen) "negatiivinen käänteinen m" #
#rArrm _ ("kohtisuora") = - 1/5 #
Linjan QR yhtälö on y = - 1/2 x + 1. Miten kirjoitat yhtälön linjalle, joka on kohtisuorassa viivaan QR nähden kohtisuorassa leikkauksessa, joka sisältää pisteen (5, 6)?
Katso ratkaisuprosessia alla: Ensinnäkin meidän on löydettävä ongelman kaltevuus kahden pisteen kohdalla. Linja QR on kaltevuuslukitusmuodossa. Lineaarisen yhtälön kaltevuusmuoto on: y = väri (punainen) (m) x + väri (sininen) (b) Jos väri (punainen) (m) on kaltevuus ja väri (sininen) (b) on y-sieppausarvo. y = väri (punainen) (- 1/2) x + väri (sininen) (1) Siksi QR: n kaltevuus on: väri (punainen) (m = -1/2). Sitten kutsutaan viivan kohtisuoraan tähän m_p Rististen rinteiden sääntö on: m_p = -1 / m Laskennan kaltevuuden korvaamin
Tomas kirjoitti yhtälön y = 3x + 3/4. Kun Sandra kirjoitti yhtälöään, he huomasivat, että hänen yhtälöstään oli kaikki samat ratkaisut kuin Tomasin yhtälöllä. Mikä yhtälö voisi olla Sandran?
4y = 12x +3 12x-4y +3 = 0 Yhtälöä voidaan antaa monissa muodoissa ja silti tarkoittaa samaa. y = 3x + 3/4 "" (tunnetaan kaltevuus / sieppausmuoto.) Kerrotaan 4: llä fraktion poistamiseksi: 4y = 12x +3 "" rarr 12x-4y = -3 "" (vakiolomake) 12x- 4y +3 = 0 "" (yleinen muoto) Nämä kaikki ovat yksinkertaisimmassa muodossa, mutta meillä voi olla myös äärettömän vaihteluita. 4y = 12x + 3 voidaan kirjoittaa seuraavasti: 8y = 24x +6 "" 12y = 36x +9, "" 20y = 60x +15 jne.
Mikä on yhtälö, joka on linjalla, joka on kohtisuorassa y = 1 / 3x + 5 - (2, 1) kohtisuorassa olevan linjan kaltevuusmuodossa?
Linjaa kohtisuoraan linjaan ý = x / 3 + 5 kohtaan Viiva y2, joka on kohtisuorassa linjaan y1, on kaltevuus: -3. y2 = -3x + b. Etsi b kirjoittamalla rivi y2, joka kulkee kohdassa (2, 1): 1 = -3 (2) = b -> b = 1 + 6 = 7 Linja y2 = -3x + 7.