Vastaus:
Selitys:
Tiedämme kohtisuoran etäisyyden (D) pisteestä
Joten tässä,
James osallistuu 5 kilometrin kävelymatkaan keräämään rahaa hyväntekeväisyyteen. Hän on saanut 200 dollaria kiinteissä panteissa ja nostaa 20 dollaria ylimääräistä palkkaa jokaista kävijämäärää kohti. Miten käytät piste-kaltevuusyhtälöä löytääksesi määrän, jonka hän nostaa, jos hän lähtee kävelemään.
Viiden mailin jälkeen Jamesillä on 300 dollaria. Piste-kaltevuusyhtälön muoto on: y-y_1 = m (x-x_1), jossa m on kaltevuus, ja (x_1, y_1) on tunnettu piste. Tapauksessamme x_1 on lähtöasento, 0 ja y_1 on rahan lähtömäärä, joka on 200. Nyt yhtälömme on y-200 = m (x-0) Meidän ongelmamme on pyytää rahamäärää James on, mikä vastaa y-arvoa, mikä tarkoittaa, että meidän on löydettävä arvo m: lle ja x: lle. x on lopullinen kohde, joka on 5 kilometriä ja m kertoo meille. Ongelma kertoo meille,
Oletetaan, että työn suorittamiseen kuluva aika on kääntäen verrannollinen työntekijöiden määrään. Toisin sanoen, mitä enemmän työntekijöitä työelämässä on, sitä vähemmän aikaa tarvitaan työn suorittamiseen. Onko aikaa 2 työntekijää 8 päivää aikaa tehdä työtä, kuinka kauan se kestää 8 työntekijää?
8 työntekijää viimeistelee työn 2 päivän kuluessa. Anna työntekijöiden lukumäärä w ja työpäivän päättymispäivämäärä d. Sitten w prop 1 / d tai w = k * 1 / d tai w * d = k; w = 2, d = 8:. k = 2 * 8 = 16: .w * d = 16. [k on vakio]. Näin ollen työn yhtälö on w * d = 16; w = 8, d =? :. d = 16 / w = 16/8 = 2 päivää. 8 työntekijää viimeistelee työn 2 päivän kuluessa. [Ans]
Kolmion ympärysmitta on 29 mm. Ensimmäisen puolen pituus on kaksi kertaa toisen sivun pituus. Kolmannen sivun pituus on 5 enemmän kuin toisen puolen pituus. Miten löydät kolmion sivupituudet?
S_1 = 12 s_2 = 6 s_3 = 11 Kolmion ympärysmitta on kaikkien sen sivujen pituuksien summa. Tässä tapauksessa on annettu, että kehä on 29 mm. Niinpä tässä tapauksessa: s_1 + s_2 + s_3 = 29 Niinpä sivun pituuden ratkaiseminen kääntää lausunnot annettuun yhtälömuotoon. "Ensimmäisen puolen pituus on kaksi kertaa toisen puolen pituus" Tämän ratkaisemiseksi määritämme satunnaisen muuttujan joko s_1 tai s_2. Tässä esimerkissä annan x: n olla 2. puolen pituus, jotta vältetään fraktiot yht