Vastaus:
48 kertaa
Selitys:
Määrä kertoja, kun hän joutuu osumaan palloon
Vastaus:
Selitys:
Kaksi pimeää tulipaloa samanaikaisesti. Jiri osuu 70% ajasta ja Benita osuu 80% ajasta. Miten määrität todennäköisyyden, että Jiri osuu siihen, mutta Benita menettää?
Todennäköisyys on 0,14. Vastuuvapauslauseke: Se on ollut pitkään, koska olen tehnyt tilastot, toivottavasti ravistin ruosteen täältä, mutta toivottavasti joku antaa minulle kaksinkertaisen tarkistuksen. Benitan puuttumisen todennäköisyys = 1 - Benitan todennäköisyys. P_ (Bmiss) = 1 - 0,8 = 0,2 P_ (Jhit) = 0.7 Haluamme näiden tapahtumien leikkauksen. Koska nämä tapahtumat ovat riippumattomia, käytämme kertolaskua: P_ (Bmiss) nnn P_ (Jhit) = P_ (Bmiss) * P_ (Jhit) = 0,2 * 0,7 = 0,14
Olet tutkinut, kuinka monta ihmistä odottaa rivillä pankkisi perjantaina iltapäivällä klo 15.00, ja olet luonut todennäköisyysjakauman 0, 1, 2, 3 tai 4 henkilölle linjassa. Todennäköisyydet ovat 0,1, 0,3, 0,4, 0,1 ja 0,1. Mikä on todennäköisyys, että enintään 3 henkilöä on linjassa perjantaina iltapäivällä klo 15.00?
Rivi olisi enintään 3 henkilöä. P (X = 0) + P (X = 1) + P (X = 2) + P (X = 3) = 0,1 + 0,3 + 0,4 + 0,1 = 0,9 Näin P (X <= 3) = 0,9 Näin kysymys olisi olla helpompaa käyttää kohtelusääntöä, sillä sinulla on yksi arvo, jota et ole kiinnostunut, joten voit vain poistaa sen pois koko todennäköisyydestä. kuten: P (X = 3) = 1 - P (X> = 4) = 1 - P (X = 4) = 1 - 0,1 = 0,9 Siten P (X <= 3) = 0,9
Olet tutkinut, kuinka monta ihmistä odottaa rivillä pankkisi perjantaina iltapäivällä klo 15.00, ja olet luonut todennäköisyysjakauman 0, 1, 2, 3 tai 4 henkilölle linjassa. Todennäköisyydet ovat 0,1, 0,3, 0,4, 0,1 ja 0,1. Mikä on todennäköisyys, että vähintään 3 henkilöä on linjassa perjantaina iltapäivällä klo 15.00?
Tämä on JOKA ... TAI tilanne. Voit lisätä todennäköisyyksiä. Edellytykset ovat yksinomaan: et voi olla 3–4 henkilöä rivillä. On 3 henkilöä tai 4 henkilöä linjassa. Lisää näin: P (3 tai 4) = P (3) + P (4) = 0,1 + 0,1 = 0,2 Tarkista vastaus (jos sinulla on jäljellä aikaa testin aikana) laskemalla vastakkainen todennäköisyys: P (<3) = P (0) + P (1) + P (2) = 0,1 + 0,3 + 0,4 = 0,8 Ja tämä ja vastaus lisää jopa 1,0, kuten pitäisi.