Vastaus:
Selitys:
Voit vähentää enemmän, mutta se on tylsää ratkaista tämä yhtälö, käytä vain algebrallista menetelmää.
Miten erotella f (x) = sqrt (cote ^ (4x) ketjun sääntöä käyttäen.?
F '(x) = (- 4e ^ (4x) csc ^ 2 (e ^ (4x)) (pinnasänky (e ^ (4x))) ^ (- 1/2)) / 2 väriä (valkoinen) (f' (x)) = - (2e ^ (4x) csc ^ 2 (e ^ (4x))) / sqrt (pinnasänky (e ^ (4x)) f (x) = sqrt (pinnasänky (e ^ (4x))) väri (valkoinen) (f (x)) = sqrt (g (x)) f '(x) = 1/2 * (g (x)) ^ (- 1/2) * g' (x) väri (valkoinen ) (f '(x)) = (g' (x) (g (x)) ^ (- 1/2)) / 2 g (x) = pinnasänky (e ^ (4x)) väri (valkoinen) (g (x)) = pinnasänky (h (x)) g '(x) = - h' (x) csc ^ 2 (h (x)) h (x) = e ^ (4x) väri (valkoinen) (h ( x)) = e ^ (j (x)) h '(x) = j' (x) e
Miten erotat f (x) = sqrt (ln (x ^ 2 + 3) ketjun sääntöä käyttäen.?
F "(x) = (x (ln (x ^ 2 + 3)) ^ (- 1/2)) / (x ^ 2 + 3) = x / ((x ^ 2 + 3) (ln (x ^ 2 + 3)) ^ (1/2)) = x / ((x ^ 2 + 3) sqrt (ln (x ^ 2 + 3))) Meille annetaan: y = (ln (x ^ 2 + 3) ) ^ (1/2) y '= 1/2 * (ln (x ^ 2 + 3)) ^ (1 / 2-1) * d / dx [ln (x ^ 2 + 3)] y' = ( ln (x ^ 2 + 3)) ^ (- 1/2) / 2 * d / dx [ln (x ^ 2 + 3)] d / dx [ln (x ^ 2 + 3)] = (d / dx [x ^ 2 + 3]) / (x ^ 2 + 3) d / dx [x ^ 2 + 3] = 2x y '= (ln (x ^ 2 + 3)) ^ (- 1/2) / 2 * (2x) / (x ^ 2 + 3) = (x (ln (x ^ 2 + 3)) ^ (- 1/2)) / (x ^ 2 + 3) = x / ((x ^ 2 + 3) (ln (x ^ 2 + 3)) ^ (1/2)) = x / ((x ^ 2 + 3) sqrt (ln (x ^ 2 + 3)))
Miten erotella y = cos (pi / 2x ^ 2-pix) ketjun sääntöä käyttäen?
-sin (pi / 2x ^ 2-pix) * (pix-pi) Ota ensin ulkoisen funktion johdannainen cos (x): -sin (pi / 2x ^ 2-pikseli). Mutta sinun on myös kerrottava tämä sisäpiirin johdannaisella (pi / 2x ^ 2-pix). Tee tämä termi. Pi / 2x ^ 2: n johdannainen on pi / 2 * 2x = pix. -Pixin johdannainen on vain -pi. Joten vastaus on -sin (pi / 2x ^ 2-pix) * (pix-pi)