Vastaus:
Selitys:
Polaarikoordinaattien etäisyyskaava on
Missä
Päästää
Näin ollen mainittujen pisteiden välinen etäisyys on
Vastaus:
Selitys:
(tämä yrittää palauttaa alkuperäisen vastaukseni)
Käyttäen yleistä oivallusta eikä pythagorilaista teoriaa
Kaikkien kahden samankulmaisen polaarisen koordinaatin välinen etäisyys on niiden säteiden ero.
Sateen todennäköisyys huomenna on 0,7. Sateen todennäköisyys seuraavana päivänä on 0,55 ja sateen todennäköisyys seuraavana päivänä on 0,4. Miten määrität P: n ("se sataa kaksi tai useampia päiviä kolmen päivän aikana")?
577/1000 tai 0,577 Koska todennäköisyydet lisäävät enintään 1: Ensimmäisen päivän todennäköisyys sataa = 1-0.7 = 0.3 Toisen päivän todennäköisyys sataa = 1-0,55 = 0,45 Kolmannen päivän todennäköisyys sataa = 1-0.4 = 0.6 Nämä ovat eri sateen mahdollisuudet 2 päivää: R tarkoittaa sadetta, NR ei sadetta. väri (sininen) (P (R, R, NR)) + väri (punainen) (P (R, NR, R)) + väri (vihreä) (P (NR, R, R)) Tämän tekeminen: väri (sininen ) (P (R, R, NR) = 0.7xx0.55xx0.6 = 231/100
80%: ssa tapauksista työntekijä käyttää bussia menemään töihin.Jos hän ottaa bussin, on todennäköisyys, että saavutetaan ajoissa 3/4. Keskimäärin 4 päivää 6: sta saapuu ajoissa töihin. työntekijä ei saapunut ajoissa töihin. Mikä on todennäköisyys, että hän otti bussin?
0,6 P ["hän ottaa väylän"] = 0,8 P ["hän on ajoissa | ottaa väylän"] = 0,75 P ["hän on ajoissa"] = 4/6 = 2/3 P ["hän ottaa väylän | hän ei ole ajoissa "] =? P ["hän ottaa väylän | hän ei ole ajoissa"] * P ["hän ei ole ajoissa"] = P ["hän ottaa väylän JA EI ole ajoissa"] = P ["hän ei ole ajoissa | hän ottaa väylän "] * P [" hän ottaa väylän "] = (1-0,75) * 0,8 = 0,25 * 0,8 = 0,2 => P [" hän otta
Mikä on etäisyys seuraavista polaarikoordinaateista ?: (7, (5pi) / 4), (2, (9pi) / 8)
P_1P_2 = sqrt (53-28cos ((pi) / 8)) ~~ 5.209 P_1P_2 = sqrt (r_1 ^ 2 + r_2 ^ 2-2r_1r_2cos (theta_2-theta_1)) r_1 = 7, theta_1 = (5pi) / 4; r_2 = 2, theta_2 = (9pi) / 8 P_1P_2 = sqrt (7 ^ 2 + 2 ^ 2-2 * 7 * 2cos ((9pi) / 8- (5pi) / 4)) P_1P_2 = sqrt (49 + 4-28cos (- (pi) / 8) P_1P_2 = sqrt (53-28cos ((pi) / 8)) ~~ 5.209