Miten int (1-2x ^ 2) / ((x + 1) (x-6) (x-7)) integroidaan osittaisia jakeita käyttäen?

Miten int (1-2x ^ 2) / ((x + 1) (x-6) (x-7)) integroidaan osittaisia jakeita käyttäen?
Anonim

Vastaus:

#int (1-2x ^ 2) / ((x + 1) (x-6) (x-7)) dx #

# = -1/56 ln abs (x + 1) +71/7 ln abs (x-6) -97/8 ln abs (x-7) + C #

Selitys:

#int (1-2x ^ 2) / ((x + 1) (x-6) (x-7)) dx #

# = int (-1/56 (1 / (x + 1)) + 71/7 (1 / (x-6)) - 97/8 (1 / (x-7))) dx #

# = -1/56 ln abs (x + 1) +71/7 ln abs (x-6) -97/8 ln abs (x-7) + C #

#väri valkoinen)()#

Mistä nämä kertoimet tulivat?

# (1-2x ^ 2) / ((x + 1) (x-6) (x-7)) = a / (x + 1) + b / (x-6) + c / (x-7) #

Voimme laskea #a, b, c # Heavisiden peitto-menetelmällä:

#a = (1-2 (väri (sininen) (- 1)) ^ 2) / (väri (punainen) (peruuta (väri (musta) (((väri (sininen) (- 1)) + 1)))) ((väri (sininen) (- 1)) - 6) ((väri (sininen) (- 1)) - 7)) (-1) / (- (7) (- 8)) = -1 / 56 #

#b = (1-2 (väri (sininen) (6)) ^ 2) / (((väri (sininen) (6)) + 1) väri (punainen) (peruuta (väri (musta) (((sininen) (6)) - 6)))) ((väri (sininen) (6)) - 7)) (-71) / ((7) (- 1)) = 71/7 #

#c = (1-2 (väri (sininen) (7)) ^ 2) / (((väri (sininen) (7)) + 1) ((väri (sininen) (7)) - 6) väri (punainen) (peruuta (väri (musta) (((väri (sininen) (7)) - 7))))) = (-97) / ((8) (1)) = -97 / 8 #

Vastaus oli jo olemassa