Mikä on yhtälö (0, 2) ja (1, 5) läpi kulkevan linjan piste-kaltevuusmuodossa?

Mikä on yhtälö (0, 2) ja (1, 5) läpi kulkevan linjan piste-kaltevuusmuodossa?
Anonim

Vastaus:

Katso ratkaisuprosessia alla:

Selitys:

Ensinnäkin meidän on määritettävä viivan kaltevuus. Rinne löytyy käyttämällä kaavaa: #m = (väri (punainen) (y_2) - väri (sininen) (y_1)) / (väri (punainen) (x_2) - väri (sininen) (x_1))

Missä # M # on rinne ja (#color (sininen) (x_1, y_1) #) ja (#color (punainen) (x_2, y_2) #) ovat linjan kaksi pistettä.

Arvojen korvaaminen ongelman pisteistä antaa:

#m = (väri (punainen) (5) - väri (sininen) (2)) / (väri (punainen) (1) - väri (sininen) (0)) = 3/1 = 3 #

Piste-kaltevuuskaava ilmoittaa: # (y - väri (punainen) (y_1)) = väri (sininen) (m) (x - väri (punainen) (x_1)) #

Missä #COLOR (sininen) (m) # on rinne ja #color (punainen) (((x_1, y_1))) # on kohta, jonka linja kulkee.

Lasketun kaltevuuden korvaaminen ja ongelman ensimmäisestä pisteestä saadut arvot antavat:

# (y - väri (punainen) (2)) = väri (sininen) (3) (x - väri (punainen) (0)) #

Tai

# (y - väri (punainen) (2)) = väri (sininen) (3) x #

Voimme myös korvata lasketun kaltevuuden ja ongelman arvot ongelman toisesta kohdasta antamalla:

# (y - väri (punainen) (5)) = väri (sininen) (3) (x - väri (punainen) (1)) #