Vastaus:
asymptoottia:
reikää:
ei mitään
Selitys:
Tätä toimintoa varten ei ole reikiä, koska lukijaan ja nimittäjään ei näy yhteisiä haarukkamaisia polynomeja. On olemassa vain rajoituksia, jotka on mainittava nimittäjän jokaiselle haarukoidulle polynomille. Nämä rajoitukset ovat vertikaalisia asymptootteja. Muista, että myös horisontaalinen asymptoosi on
Mitkä ovat f (x) = 1 / cosx: n asymptootti (t) ja reikä (t), jos sellaisia on?
X = pi / 2 + nastalla, n ja kokonaisluvulla on pystysuora asymptootti. Asymptootteja tulee olemaan. Aina kun nimittäjä on 0, tapahtuu pystysuora asymptootti. Määritä nimittäjä arvoon 0 ja ratkaise. cosx = 0 x = pi / 2, (3pi) / 2 Koska funktio y = 1 / cosx on jaksollinen, on äärettömät pystysuorat asymptootit, jotka kaikki seuraavat kuviota x = pi / 2 + pin, n kokonaisluku. Lopuksi huomaa, että funktio y = 1 / cosx vastaa y = secx. Toivottavasti tämä auttaa!
Mitkä ovat f (x) = 1 / (2-x): n asymptootti (t) ja reikä (t), jos sellaisia on?
Tämän toiminnon asymptootit ovat x = 2 ja y = 0. 1 / (2-x) on järkevä toiminto. Tämä tarkoittaa, että funktion muoto on näin: kaavio {1 / x [-10, 10, -5, 5]} Nyt funktio 1 / (2-x) noudattaa samaa kaaviorakennetta, mutta muutama tweaks . Kaavio siirtyy ensin vaakasuoraan oikealle 2: lla. Tätä seuraa heijastus x-akselin yli, jolloin tuloksena on kaavio: grafiikka {1 / (2-x) [-10, 10, -5, 5 ]} Kun tämä graafi on mielessäsi, etsimään asymptootit, kaikki mitä tarvitsee etsii rivejä, joihin kaavio ei kosketa. Ja ne ovat x = 2 ja y = 0.
Mitkä ovat f (x) = 1 / cotx: n asymptootti (t) ja reikä (t), jos sellaisia on?
Tämä voidaan kirjoittaa uudelleen f (x) = tanx, joka vuorostaan voidaan kirjoittaa f (x) = sinx / cosx Tämä määritetään, kun cosx = 0, eli x = pi / 2 + pin. Toivottavasti tämä auttaa!