Vastaus:
Selitys:
Voimme muuntaa epäasianmukaiset jakeet vaihteleviksi numeroiksi pitkän jakautumisen kautta. Niin,
Divisioonan asettaminen:
Koska kolme menee yhdentoista
James osallistuu 5 kilometrin kävelymatkaan keräämään rahaa hyväntekeväisyyteen. Hän on saanut 200 dollaria kiinteissä panteissa ja nostaa 20 dollaria ylimääräistä palkkaa jokaista kävijämäärää kohti. Miten käytät piste-kaltevuusyhtälöä löytääksesi määrän, jonka hän nostaa, jos hän lähtee kävelemään.
Viiden mailin jälkeen Jamesillä on 300 dollaria. Piste-kaltevuusyhtälön muoto on: y-y_1 = m (x-x_1), jossa m on kaltevuus, ja (x_1, y_1) on tunnettu piste. Tapauksessamme x_1 on lähtöasento, 0 ja y_1 on rahan lähtömäärä, joka on 200. Nyt yhtälömme on y-200 = m (x-0) Meidän ongelmamme on pyytää rahamäärää James on, mikä vastaa y-arvoa, mikä tarkoittaa, että meidän on löydettävä arvo m: lle ja x: lle. x on lopullinen kohde, joka on 5 kilometriä ja m kertoo meille. Ongelma kertoo meille,
Tutkimuksessa, jossa oli 1118 henkilöä, 732 ihmistä ilmoitti äänestäneensä äskettäisissä presidentinvaaleissa. Kun otetaan huomioon, että 63 prosenttia äänioikeutetuista äänestäjistä tosiasiallisesti äänesti, mikä on todennäköisyys, että 1118 satunnaisesti valittua äänestäjää ainakin 732 äänesti?
Millä eksponentilla minkä tahansa luvun teho muuttuu 0: ksi? Kuten tiedämme, että (mikä tahansa numero) ^ 0 = 1, niin mikä on x: n arvo (missä tahansa numerossa) ^ x = 0?
Katso alla Olkoon z on kompleksiluku, jossa on rakenne z = rho e ^ {i phi}, jossa rho> 0, rho RR: ssä ja phi = arg (z) voimme esittää tämän kysymyksen. Mitä n arvoja RR: ssä esiintyy z ^ n = 0? Hieman enemmän z ^ n = rho ^ ne ^ {in phi} = 0-> e ^ {in phi} = 0, koska hypoteesin rho> 0. Siten käyttäen Moivren identiteettiä e ^ {in phi} = cos (n phi ) + i sin (n phi), sitten z ^ n = 0-> cos (n phi) + i sin (n phi) = 0-> n phi = pi + 2k pi, k = 0, pm1, pm2, pm3, cdots Lopuksi n = (pi + 2k pi) / phi, k = 0, pm1, pm2, pm3, cdots saamme z ^ n = 0