Vastaus:
Selitys:
moninkertaistaa molemmat puolet
jakaa molemmat puolet
yksikön ympyrästä
niin
ja me tiedämme sen
niin
niin
Vastaus:
Selitys:
Tapa, jolla tarkistan toisen vastauksen, on minun oma.
Siinä on kolmion kolmio, tiesit, että se oli tulossa.
Alueella
Tarkistaa:
Mitkä ovat f (x) = sin (x) - cos (x) absoluuttinen ääriarvo aikavälillä [-pi, pi]?
0 ja sqrt2. 0 <= | sin theta | <= 1 sin x - cos x = sin x -sin (pi / 2-x) = 2 cos ((x + pi / 2-x) / 2) sin ((x- (pi / 2-x)) / 2) = - 2 cos (pi / 4) sin (x-pi / 4) = -sqrt2 sin (x-pi / 4) niin, | sin x - cos x | = | -sqrt2 sin (x-pi / 4) | = sqrt2 | sin (x-pi / 4) | <= Sqrt2.
Mitkä ovat f (x, y) = 6 sin x sin y: n ääriarvot ja satulapisteet aikavälillä x, y [-pi, pi]?
X = pi / 2 ja y = pi x = pi / 2 ja y = -pi x = -pi / 2 ja y = pi x = -pi / 2 ja y = -pi x = pi ja y = pi / 2 x = pi ja y = -pi / 2 x = -pi ja y = pi / 2 x = -pi ja y = -pi / 2 2-muuttujan funktion kriittisten pisteiden löytämiseksi sinun on laskettava kaltevuus, joka on vektori, joka kertoo johdannaiset kunkin muuttujan suhteen: (d / dx f (x, y), d / dyf (x, y)) Joten meillä on d / dx f (x, y) = 6cos (x ) sin (y) ja vastaavasti d / dyf (x, y) = 6sin (x) cos (y). Kriittisten pisteiden löytämiseksi gradientin on oltava nolla-vektori (0,0), joka tarkoittaa järjestelmän ratkaisemista {(6cos (
Miten löydät alueet, joita rajoittavat käyrät y = -4sin (x) ja y = sin (2x) suljetun aikavälin välillä välillä 0 - pi?
Arvioi int_0 ^ π | -4sin (x) -sin (2x) | dx Pinta-ala: 8 Kahden jatkuvan funktion f (x) ja g (x) välinen alue x: n välillä [a, b] on: int_a ^ b | f (x) -g (x) | dx Siksi meidän on löydettävä, kun f (x)> g (x) Anna käyrät olla funktioita: f (x) = - 4sin (x) g (x) = sin ( 2x) f (x)> g (x) -4sin (x)> sin (2x) Tietäen, että sin (2x) = 2sin (x) cos (x) -4sin (x)> 2sin (x) cos (x) Jaa 2: lla, joka on positiivinen: -2sin (x)> sin (x) cos (x) Jaa sinxillä ilman merkin kääntämistä, koska sinx> 0 jokaiselle x: lle (0, π) -2> cos (x)