Vastaus:
Selitys:
Kaikki linjat, jotka ovat kohtisuorassa
Koska yhtälö on
Kaikki linjat, jotka ovat kohtisuorassa
Kuten
Niinpä suoran linjan vaadittu yhtälö on
Linjan QR yhtälö on y = - 1/2 x + 1. Miten kirjoitat yhtälön linjalle, joka on kohtisuorassa viivaan QR nähden kohtisuorassa leikkauksessa, joka sisältää pisteen (5, 6)?
Katso ratkaisuprosessia alla: Ensinnäkin meidän on löydettävä ongelman kaltevuus kahden pisteen kohdalla. Linja QR on kaltevuuslukitusmuodossa. Lineaarisen yhtälön kaltevuusmuoto on: y = väri (punainen) (m) x + väri (sininen) (b) Jos väri (punainen) (m) on kaltevuus ja väri (sininen) (b) on y-sieppausarvo. y = väri (punainen) (- 1/2) x + väri (sininen) (1) Siksi QR: n kaltevuus on: väri (punainen) (m = -1/2). Sitten kutsutaan viivan kohtisuoraan tähän m_p Rististen rinteiden sääntö on: m_p = -1 / m Laskennan kaltevuuden korvaamin
Mikä on yhtälö linjasta, joka kulkee alkuperän läpi ja on kohtisuorassa linjaan, joka kulkee seuraavien pisteiden läpi: (3,7), (5,8)?
Y = -2x Ensinnäkin meidän on löydettävä (3,7) ja (5,8) "gradientti" = (8-7) / (5-3) "gradientti" = 1: n kulkevan linjan kaltevuus. / 2 Nyt kun uusi rivi on PERPENDICULAR 2 pisteen läpi kulkevaan linjaan, voimme käyttää tätä yhtälöä m_1m_2 = -1, jossa kahden eri rivin kaltevuudet kerrottuna on -1, jos linjat ovat kohtisuorassa toisiinsa nähden eli suorassa kulmassa. uuden rivin gradientti olisi siis 1 / 2m_2 = -1 m_2 = -2 Nyt voimme käyttää pisteiden gradienttikaavaa löytääksesi yhtälön rivi
Mikä on yhtälö linjasta, joka kulkee linjojen y = x ja x + y = 6 leikkauspisteen läpi ja joka on kohtisuorassa linjan kanssa yhtälöllä 3x + 6y = 12?
Linja on y = 2x-3. Etsi ensin y = x ja x + y = 6 leikkauspiste käyttäen yhtälöiden järjestelmää: y + x = 6 => y = 6-xy = x => 6-x = x => 6 = 2x => x = 3 ja koska y = x: => y = 3 Viivojen leikkauspiste on (3,3). Nyt on löydettävä rivi, joka kulkee pisteen (3,3) läpi ja on kohtisuorassa linjaan 3x + 6y = 12. Jos haluat löytää rivin 3x + 6y = 12 kaltevuuden, muuntaa se kaltevuuslukitusmuodoksi: 3x + 6y = 12 6y = -3x + 12 y = -1 / 2x + 2 Joten kaltevuus on -1/2. Kohtisuorien viivojen rinteet ovat vastakkaisia vastakkaisia, joten se tarkoittaa