Mikä on yhtälö linjalle, joka on normaali f (x) = sec4x-cot2x: lle x = pi / 3: ssa?

Mikä on yhtälö linjalle, joka on normaali f (x) = sec4x-cot2x: lle x = pi / 3: ssa?
Anonim

Vastaus:

# "Normaali" => y = - (3x) / (8-24sqrt3) + (152sqrt3-120 + 3pi) / (24-72sqrt2) => y ~~ 0.089x-1,52 #

Selitys:

Normaali on kohtisuora viiva tangenttiin.

#f (x) = s (4x) -cot (2x) #

#f '(x) = 4sec (4x) tan (3x) + 2csc ^ 2 (2x) #

#f "(pi / 3) = 4sec ((4pi) / 3) tan ((4pi) / 3) + 2csc ^ 2 ((2pi) / 3) = (8-24sqrt3) / 3 #

Normaali, # M = -1 / (f '(pi / 3)) = - 3 / (8-24sqrt3) #

#f (pi / 3) = s ((4pi) / 3) -cot ((2pi) / 3) = (sqrt3-6) / 3 #

# (Sqrt3-6) / 3 = -3 / (8-24sqrt3) (pi / 3) + c #

# C = (sqrt3-6) / 3 + pi / (8-24sqrt3) = (152sqrt3-120 + 3pi) / (24-72sqrt2) #

# "Normaali": y = - (3x) / (8-24sqrt3) + (152sqrt3-120 + 3pi) / (24-72sqrt2); y = 0.089x-1,52 #