Vastaus:
120
Selitys:
Tämä on yhdistelmäkysymys - pentujen 1, 2, 3 valitseminen on sama kuin pentujen 3, 2, 1 valitseminen.
Yhdistelmän yleinen kaava on:
Stereokaupan omistaja haluaa mainostaa, että hänellä on useita erilaisia äänijärjestelmiä varastossa. Myymälässä on 7 eri CD-soitinta, 8 erilaista vastaanotinta ja 10 eri kaiutinta. Kuinka monta eri äänijärjestelmää omistaja voi mainostaa?
Omistaja voi mainostaa yhteensä 560 eri äänijärjestelmää! Tapa ajatella tätä on, että jokainen yhdistelmä näyttää tältä: 1 Kaiutin (järjestelmä), 1 vastaanotin, 1 CD-soitin Jos meillä oli vain yksi vaihtoehto kaiuttimille ja CD-soittimille, mutta meillä on vielä 8 eri vastaanotinta, niin siellä olisi 8 yhdistelmää. Jos vahvistimme vain kaiuttimet (teeskennellä, että käytettävissä on vain yksi kaiutinjärjestelmä), voimme työskennellä siellä: S, R_1, C_1 S, R_1,
Justinissa on 20 lyijykynää, 25 pyyhekumia ja 40 paperiliittimiä. Hän järjestää kohteet kullekin ryhmiksi, joissa on sama määrä ryhmää. Kaikki ryhmän kohteet ovat samantyyppisiä. Kuinka monta kohdetta hän voi laittaa kullekin ryhmälle?
Justin voi laittaa 4 lyijykynää, 5 pyyhekumeria ja 8 paperiliittintä 5 eri pussiin. Justin haluaa jakaa lyijykynät, pyyhkeet ja leikkeet yhteen. Oletettavasti, jos hän käsittelee nämä henkilöt, vastaanottajilla on sama määrä joitakin lyijykynää, joitakin pyyhkeitä ja joitakin paperiliittimiä. Ensimmäinen asia on löytää numero, joka jakautuu tasaisesti kaikkiin kolmeen. Toisin sanoen numero, joka jakautuu tasaisesti 20: een, 25: ään ja 40: een. Vaikuttaa selvältä, että numero 5 tekee työn. Tä
Voit vastata 10 kysymykseen yhteensä 12 kysymyksestä. Kuinka monella eri tavalla voit valita kysymykset?
66 erilaista tapaa Koska tilaus ei ole tässä ongelmassa, käytämme yhdistelmäkaavaa. Keräämme 10 joukosta 12, joten n = 12 ja r = 10. väri (valkoinen) ("kaksi") _ nC_r = (n!) / ((N - r)! R!) = (12!) / ((12 - 10)! 10!) = 66 Näin ollen on 66 eri tapaa, joilla voit valita kysymykset. Toivottavasti tämä auttaa!